The purpose of the Clinical investigation/Tissue Procurement Core is to support translational research protocols which will ultimately result in decreasing the mortality rate from lung cancer. To accomplish this task the major responsibilities of the core are; a) accruing patients and institutions to participate in SPORE-initiated trials, b) timely and accurate collection of data and specimens, and c) accessibility of data for analysis by the various SPORE researchers and other Core facilities. During the first year, the Core will be responsible for supporting ii prevention and cancer control trials and therapeutic trial. The focus of the prevention and control trials is to understand the biological changes that occur in the bronchial epithelium (as detected by fluorescent bronchoscopy) when exposed to tobacco and with interventions such as smoking cessation, radiotherapy, chemotherapy, and chemopreventive agents. A complementary trial which will yield valuable information in guiding and prioritizing the selection of biomarkers to examine in the above trials is the evaluation of biomarkers as prognostic indicators in tumor tissue from patients with lung cancer. Two protocols will address the question of inheritance and genetic susceptibility of lung cancer on a molecular basis. One trial will identify families with lung cancer, extensively review their environmental history, obtain an extended pedigree and collect their blood for DNA isolation for future analysis. The second trial will determine the population distribution of a candidate susceptible marker urinary bombesin- like peptide (BLP). The final trial plans to develop and validate minimally invasive measures of neutral endopeptidases expression which may be the primary determinant of BLP. The therapeutic trial included is the continuation of the Phase II trial of B8509-035 (a novel inhibitor of a neuropeptide signal transduction pathway) in patients with relapsed SCLC. Over time, trials will open and close. Based upon the following accrual numbers, it is estimated that the core can provide data management support for 8-10 trials per year; about 500 new patients on the sputum screening trial, about 200 new patients on the prevention and control trials, and about 50 new patients on therapeutic trials with follow up data on 600 patients enrolled onto the sputum trial or other prevention and control trials and 100 therapeutic patients. Upon successful completion of these pilot trials, it is the hope of this core that the information obtained will lead to multi-institutional trials. Meanwhile, new pilot protocols will be designed and implemented to create a model operation for performing translational clinical research protocols in lung cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
3P50CA058187-07S1
Application #
6217431
Study Section
Project Start
1999-05-01
Project End
2000-04-30
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
7
Fiscal Year
1999
Total Cost
Indirect Cost
Name
University of Colorado Denver
Department
Type
DUNS #
065391526
City
Aurora
State
CO
Country
United States
Zip Code
80045
McDaniel, Nellie K; Cummings, Christopher T; Iida, Mari et al. (2018) MERTK Mediates Intrinsic and Adaptive Resistance to AXL-targeting Agents. Mol Cancer Ther 17:2297-2308
Ghosh, Moumita; Miller, York E; Vandivier, R William et al. (2018) Reply to Sohal: Airway Basal Cell Reprogramming and Epithelial-Mesenchymal Transition: A Potential Key to Understanding Early Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 197:1645-1646
Ghosh, Moumita; Miller, York E; Nakachi, Ichiro et al. (2018) Exhaustion of Airway Basal Progenitor Cells in Early and Established Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 197:885-896
Farago, Anna F; Taylor, Martin S; Doebele, Robert C et al. (2018) Clinicopathologic Features of Non-Small-Cell Lung Cancer Harboring an NTRK Gene Fusion. JCO Precis Oncol 2018:
He, Yayi; Liu, Sangtian; Mattei, Jane et al. (2018) The combination of anti-KIR monoclonal antibodies with anti-PD-1/PD-L1 monoclonal antibodies could be a critical breakthrough in overcoming tumor immune escape in NSCLC. Drug Des Devel Ther 12:981-986
Genova, Carlo; Socinski, Mark A; Hozak, Rebecca R et al. (2018) EGFR Gene Copy Number by FISH May Predict Outcome of Necitumumab in Squamous Lung Carcinomas: Analysis from the SQUIRE Study. J Thorac Oncol 13:228-236
Merrick, Daniel T; Edwards, Michael G; Franklin, Wilbur A et al. (2018) Altered Cell-Cycle Control, Inflammation, and Adhesion in High-Risk Persistent Bronchial Dysplasia. Cancer Res 78:4971-4983
Li, Howard Y; McSharry, Maria; Walker, Deandra et al. (2018) Targeted overexpression of prostacyclin synthase inhibits lung tumor progression by recruiting CD4+ T lymphocytes in tumors that express MHC class II. Oncoimmunology 7:e1423182
Ravichandran, Kameswaran; Holditch, Sara; Brown, Carolyn N et al. (2018) IL-33 deficiency slows cancer growth but does not protect against cisplatin-induced AKI in mice with cancer. Am J Physiol Renal Physiol 314:F356-F366
Hilberg, Frank; Tontsch-Grunt, Ulrike; Baum, Anke et al. (2018) Triple Angiokinase Inhibitor Nintedanib Directly Inhibits Tumor Cell Growth and Induces Tumor Shrinkage via Blocking Oncogenic Receptor Tyrosine Kinases. J Pharmacol Exp Ther 364:494-503

Showing the most recent 10 out of 435 publications