The overarching goal of the project is to discover and translate knowledge regarding the biology of pulmonary premalignancy to reduce lung cancer burden through 1) the discovery and validation of clinically useful biomarkers of risk and 2) the development of effective chemopreventive treatments. Biomarkers of lung cancer risk can have a variety of clinical uses, including population screening for early detection, defining high risk populations and as aids in guiding clinical decision making in settings of CT detected nodules of indeterminate etiology. Regardless of the outcome of ongoing randomized controlled trials of lung cancer screening using CT, there will be an increasing clinical need for risk biomarkers to guide decisions on management of lung nodules detected by CT. New knowledge regarding the biology of pulmonary premalignancy is being translated to novel chemoprevention strategies by this and other SPORE projects.
Our Specific Aims are to:
Specific Aim 1. Identify and validate biomarkers of lung cancer in sputum, bronchial epithelium, BAL and blood. We will focus on biomarkers with considerable preliminary support, including atypia, gene promoter hypermethylation and chromosomal aneusomy in sputum, as well as on the development of new approaches, including these same markers and protein expression in bronchial epithelium and bronchoalveolar lavage. We will take advantage of unique prospective cohorts of subjects with biological samples harvested and stored and in whom both prevalent and incident lung cancer is tracked by a team of epidemiology staff to carry out cross sectional and longitudinal nested case control studies.
Specific Aim 2. Validate the clinical utility of sputum biomarkers in the context of the NLST ACRIN Trial. The most promising sputum markers from Specific Aim 1 will be validated as a complementary set of biomarkers in groups of subjects strategically defined and sampled from a trial of CT screening. Analyses will assess the performance of this biomarker panel for lung cancer screening as well as for its utility in assisting in clinical decisions regarding the management of pulmonary nodules of undetermined significance.
Specific Aim 3. Conduct Phase II chemoprevention trials to prioritize agents for testing in Phase III trials. The current lloprost chemoprevention trial will be completed in early 2008. We will analyze the response and develop a successor trial based on a PPAR gamma agonist as supported by preclinical data from Project 3. Our proposal will have important implications for early detection, diagnosis and prevention of lung cancer

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA058187-17
Application #
8282955
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2011-05-01
Budget End
2012-04-30
Support Year
17
Fiscal Year
2011
Total Cost
$252,397
Indirect Cost
Name
University of Colorado Denver
Department
Type
DUNS #
041096314
City
Aurora
State
CO
Country
United States
Zip Code
80045
Sakamoto, Mandy R; Honce, Justin M; Lindquist, Deborah L et al. (2018) Lorlatinib Salvages CNS Relapse in an ALK-Positive Non-Small-Cell Lung Cancer Patient Previously Treated With Crizotinib and High-Dose Brigatinib. Clin Lung Cancer :
McCoach, Caroline E; Blakely, Collin M; Banks, Kimberly C et al. (2018) Clinical Utility of Cell-Free DNA for the Detection of ALK Fusions and Genomic Mechanisms of ALK Inhibitor Resistance in Non-Small Cell Lung Cancer. Clin Cancer Res 24:2758-2770
Geraci, Mark W (2018) TARGETING THE PROSTACYCLIN/PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR GAMMA AXIS IN LUNG CANCER CHEMOPREVENTION. Trans Am Clin Climatol Assoc 129:48-55
Robichaux, Jacqulyne P; Elamin, Yasir Y; Tan, Zhi et al. (2018) Mechanisms and clinical activity of an EGFR and HER2 exon 20-selective kinase inhibitor in non-small cell lung cancer. Nat Med 24:638-646
Kimball, Abigail K; Oko, Lauren M; Bullock, Bonnie L et al. (2018) A Beginner's Guide to Analyzing and Visualizing Mass Cytometry Data. J Immunol 200:3-22
Tippimanchai, Darinee D; Nolan, Kyle; Poczobutt, Joanna et al. (2018) Adenoviral vectors transduce alveolar macrophages in lung cancer models. Oncoimmunology 7:e1438105
DeHart, David N; Lemasters, John J; Maldonado, Eduardo N (2018) Erastin-Like Anti-Warburg Agents Prevent Mitochondrial Depolarization Induced by Free Tubulin and Decrease Lactate Formation in Cancer Cells. SLAS Discov 23:23-33
Ren, Shengxiang; Zhang, Shucai; Jiang, Tao et al. (2018) Early detection of lung cancer by using an autoantibody panel in Chinese population. Oncoimmunology 7:e1384108
Davies, Kurtis D; Le, Anh T; Sheren, Jamie et al. (2018) Comparison of Molecular Testing Modalities for Detection of ROS1 Rearrangements in a Cohort of Positive Patient Samples. J Thorac Oncol 13:1474-1482
Iams, Wade T; Yu, Hui; Shyr, Yu et al. (2018) First-line Chemotherapy Responsiveness and Patterns of Metastatic Spread Identify Clinical Syndromes Present Within Advanced KRAS Mutant Non-Small-cell Lung Cancer With Different Prognostic Significance. Clin Lung Cancer 19:531-543

Showing the most recent 10 out of 435 publications