Pancreas cancer will strike 25,000 families in the United States this year. Families in which there is an aggregation of cancer of the pancreas provide a unique opportunity to identify the molecular genetics of this disease. A genetic understanding of the familial risks can, in turn, form a basis for counseling patients and their families, and for developing new tests to detect this disease earlier. The study of cancer families has led to the discovery of a number of genes for which inherited mutations cause cancer. Examples include: the adenomatous polyposis coli (APC) gene; the von Hippel-Lindau disease tumor suppressor gene; the BRCA1 and BRCA2 genes; the RET proto-oncogene; and the retinoblastoma (RB) gene. Most of the genes identified by studying cancer families have also been found to play a role in the development of sporadic carcinomas. A growing body of literature suggests that there is a familial form of cancer of the pancreas. Studies of these families will have a direct translational impact and we are in a unique position to study these families. The Johns Hopkins Hospital currently treats over 170 patients with pancreas cancer per year, we have established one of the world's largest registries of familial pancreatic cancers, and we have established working collaborations with other cancer family registries. Through our studies of sporadic pancreas cancers we have identified candidate genes and loci for familial cancers, and we have demonstrated, using the same techniques proposed in this application, that germline mutations in p16 are associated with some cases of familial pancreatic carcinoma. We will take advantage of this preliminary work to: 1) determine the patterns of inheritance of pancreatic cancer; 2) determine whether germline mutations in candidate genes lead to the development of pancreatic cancer; and 3) evaluate loci linked to hereditary pancreatic cancer using the method of retained alleles at sites of loss of heterozygosity in primary cancers. These studies should provide a rational basis for predictive gene testing, and for counseling and screening individuals at risk for the development of pancreatic cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA062924-07
Application #
6300467
Study Section
Project Start
2000-01-18
Project End
2000-12-31
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
7
Fiscal Year
2000
Total Cost
$219,161
Indirect Cost
Name
Johns Hopkins University
Department
Type
DUNS #
045911138
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Raman, Aadhithya; Lennon, Anne Marie (2018) Cyst Fluid Biomarkers - Diagnosis and Prediction of Malignancy for Cystic Lesions of the Pancreas. Visc Med 34:178-181
Noë, Michaël; Pea, Antonio; Luchini, Claudio et al. (2018) Whole-exome sequencing of duodenal neuroendocrine tumors in patients with neurofibromatosis type 1. Mod Pathol 31:1532-1538
Cohen, Joshua D; Li, Lu; Wang, Yuxuan et al. (2018) Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 359:926-930
Shumar, Stephanie A; Kerr, Evan W; Geldenhuys, Werner J et al. (2018) Nudt19 is a renal CoA diphosphohydrolase with biochemical and regulatory properties that are distinct from the hepatic Nudt7 isoform. J Biol Chem 293:4134-4148
Li, Yuguo; Qiao, Yuan; Chen, Hanwei et al. (2018) Characterization of tumor vascular permeability using natural dextrans and CEST MRI. Magn Reson Med 79:1001-1009
Saung, May Tun; Muth, Stephen; Ding, Ding et al. (2018) Targeting myeloid-inflamed tumor with anti-CSF-1R antibody expands CD137+ effector T-cells in the murine model of pancreatic cancer. J Immunother Cancer 6:118
Canto, Marcia Irene; Almario, Jose Alejandro; Schulick, Richard D et al. (2018) Risk of Neoplastic Progression in Individuals at High Risk for Pancreatic Cancer Undergoing Long-term Surveillance. Gastroenterology 155:740-751.e2
Makohon-Moore, Alvin P; Matsukuma, Karen; Zhang, Ming et al. (2018) Precancerous neoplastic cells can move through the pancreatic ductal system. Nature 561:201-205
Chu, Nam; Salguero, Antonieta L; Liu, Albert Z et al. (2018) Akt Kinase Activation Mechanisms Revealed Using Protein Semisynthesis. Cell 174:897-907.e14
Felsenstein, Matthäus; Noë, Michaël; Masica, David L et al. (2018) IPMNs with co-occurring invasive cancers: neighbours but not always relatives. Gut 67:1652-1662

Showing the most recent 10 out of 883 publications