The major goals of this project are to investigate the sequential changes involved in lung cancer pathogenesis and to determine whether they are useful for risk assessment and as intermediate endpoints for chemoprevention trials. Considerable progress has been made, and 16 manuscripts (9 peer reviewed, 7 invited) have resulted from the work. The major findings include the following: l) Many clones and subclones of molecular changes have been identified in histologically normal and preneoplastic smoking damaged lung epithelium; 2) the sequential events involved in preneoplasia are being elucidated, and changes are divided into early, intermediate and late; 3) We are determining whether the pattern of changes is predictive of increased cancer risk; 4) extensive allelotyping of lung cancers and cell lines has been performed and the molecular changes in the various forms of lung cancer will be compared; 5) dysregulation of telomerase has been documented during lung cancer pathogenesis, and putative telomerase inhibitors have been identified on chromosomes 3p and 10p; 6) molecular changes in the bronchial biopsies generated as part of the chemoprevention trial (Project 4) are being analyzed. Future work will include: a) mapping the spatial extent and relationships of molecular changes in normal and abnormal bronchial epithelium; b) investigation of the genes involved at several sites of frequent allelic loss on chromosome 4 which were identified during our allelotyping studies; c) identification of the telomerase repressor on chromosome 10p; d) determination of whether molecular changes can be modulated by retinoids.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
2P50CA070907-04
Application #
6198646
Study Section
Project Start
1999-09-08
Project End
2000-08-31
Budget Start
Budget End
Support Year
4
Fiscal Year
1999
Total Cost
Indirect Cost
City
Dallas
State
TX
Country
United States
Zip Code
75390
Parra, Edwin R; Villalobos, Pamela; Mino, Barbara et al. (2018) Comparison of Different Antibody Clones for Immunohistochemistry Detection of Programmed Cell Death Ligand 1 (PD-L1) on Non-Small Cell Lung Carcinoma. Appl Immunohistochem Mol Morphol 26:83-93
Yamauchi, Mitsuo; Barker, Thomas H; Gibbons, Don L et al. (2018) The fibrotic tumor stroma. J Clin Invest 128:16-25
Ma, Junsheng; Hobbs, Brian P; Stingo, Francesco C (2018) Integrating genomic signatures for treatment selection with Bayesian predictive failure time models. Stat Methods Med Res 27:2093-2113
Yi, Faliu; Yang, Lin; Wang, Shidan et al. (2018) Microvessel prediction in H&E Stained Pathology Images using fully convolutional neural networks. BMC Bioinformatics 19:64
Song, Kai; Bi, Jia-Hao; Qiu, Zhe-Wei et al. (2018) A quantitative method for assessing smoke associated molecular damage in lung cancers. Transl Lung Cancer Res 7:439-449
Ji, Xuemei; Bossé, Yohan; Landi, Maria Teresa et al. (2018) Identification of susceptibility pathways for the role of chromosome 15q25.1 in modifying lung cancer risk. Nat Commun 9:3221
He, Min; Liu, Shanshan; Gallolu Kankanamalage, Sachith et al. (2018) The Epithelial Sodium Channel (?ENaC) Is a Downstream Therapeutic Target of ASCL1 in Pulmonary Neuroendocrine Tumors. Transl Oncol 11:292-299
Parra, Edwin R; Villalobos, Pamela; Behrens, Carmen et al. (2018) Effect of neoadjuvant chemotherapy on the immune microenvironment in non-small cell lung carcinomas as determined by multiplex immunofluorescence and image analysis approaches. J Immunother Cancer 6:48
Guo, Hou-Fu; Tsai, Chi-Lin; Terajima, Masahiko et al. (2018) Pro-metastatic collagen lysyl hydroxylase dimer assemblies stabilized by Fe2+-binding. Nat Commun 9:512
Meraz, Ismail M; Majidi, Mourad; Cao, Xiaobo et al. (2018) TUSC2 Immunogene Therapy Synergizes with Anti-PD-1 through Enhanced Proliferation and Infiltration of Natural Killer Cells in Syngeneic Kras-Mutant Mouse Lung Cancer Models. Cancer Immunol Res 6:163-177

Showing the most recent 10 out of 1059 publications