Activating mutations in the K-ras proto-oncogene occur in 30% of lung adenocarcinomas, the most commonsubtype of non-small cell lung cancer (NSCLC). K-ras is a membrane-associated GTPase that activatesmultiple kinase pathways, several of which have transforming activity in cellular models. Which of thesedownstream mediators of K-ras contribute to lung tumorigenesis has not been fully elucidated. Moreover, noeffective approaches are available for the treatment of K-ras-mutant NSCLC. To address this problem, weinvestigated a mouse model (K-rasl_A1) that develops lung adenocarcinoma through somatic activation ofoncogenic K-ras (G12D). We observed prominent inflammatory cells (macrophages and neutrophils),vascular endothelial cells, and bronchioalveolar stem cells (BASCs, the putative precursors of lungadenocarcinoma cells) infiltrating atypical alveolar hyperplasia (AAH) lesions and adenomas. This findingindicates that a stromal response induced by oncogenic K-ras accompanies early lung neoplasia. Our globalhypothesis is that oncogenic K-ras-induced lung tumorigenesis is driven in part by a host response to thepresence of transformed alveolar epithelial cells. These cells arise from BASCs and secrete chemokines thatrecruit inflammatory cells and endothelial cells, which, in turn, secrete chemokines and growth factors thatpromote BASC expansion, thereby accelerating lung tumorigenesis. We will test this hypothesis by carryingout two Specific Aims.
In Aim 1, we will use a genetic approach (loss of 3-phosphoinositide-dependentkinase [PDK-1], a PI3K-dependent kinase) to confirm our finding that pharmacologic inhibition of PI3Kdependentsignaling (PX-866 or CCI-779) is sufficient to block lung tumorigenesis induced by oncogenic Kras,and we will examine whether agents that target intra-tumoral endothelial cells (neutralizing CXCR-2antibody) and inflammatory cells (CCI-779) have cooperative anti-tumor effects.
In Aim 2, we will translateour findings in KrasLAI mice to the clinic by examining whether NSCLC patients with K-ras-mutant tumorshave increased serum concentrations of CXCR2 ligands, which thereby mobilize CXCR2pos blood cells intothe circulation. We have established the ability to detect by flow cytometric analysis circulating endothelialcell and CXCR2pos monocytic populations, which we will examine as biomarkers of response to treatmentwith a neutralizing anti-CXCR2 antibody in a Phase I clinical trial in cancer patients.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
2P50CA070907-11
Application #
7507383
Study Section
Special Emphasis Panel (ZCA1-GRB-I (M1))
Project Start
2008-09-01
Project End
2013-04-30
Budget Start
2008-09-01
Budget End
2009-04-30
Support Year
11
Fiscal Year
2008
Total Cost
$209,773
Indirect Cost
Name
University of Texas Sw Medical Center Dallas
Department
Type
DUNS #
800771545
City
Dallas
State
TX
Country
United States
Zip Code
75390
Wang, Jacqueline F; Pu, Xingxiang; Zhang, Xiaoshan et al. (2018) Variants with a low allele frequency detected in genomic DNA affect the accuracy of mutation detection in cell-free DNA by next-generation sequencing. Cancer 124:1061-1069
Rashdan, Sawsan; Minna, John D; Gerber, David E (2018) Diagnosis and management of pulmonary toxicity associated with cancer immunotherapy. Lancet Respir Med 6:472-478
Pierzynski, Jeanne A; Ye, Yuanqing; Lippman, Scott M et al. (2018) Socio-demographic, Clinical, and Genetic Determinants of Quality of Life in Lung Cancer Patients. Sci Rep 8:10640
Akbay, Esra A; Kim, James (2018) Autochthonous murine models for the study of smoker and never-smoker associated lung cancers. Transl Lung Cancer Res 7:464-486
Zhang, Wei; Girard, Luc; Zhang, Yu-An et al. (2018) Small cell lung cancer tumors and preclinical models display heterogeneity of neuroendocrine phenotypes. Transl Lung Cancer Res 7:32-49
Tan, Xiaochao; Banerjee, Priyam; Liu, Xin et al. (2018) The epithelial-to-mesenchymal transition activator ZEB1 initiates a prometastatic competing endogenous RNA network. J Clin Invest 128:1267-1282
McMillan, Elizabeth A; Ryu, Myung-Jeom; Diep, Caroline H et al. (2018) Chemistry-First Approach for Nomination of Personalized Treatment in Lung Cancer. Cell 173:864-878.e29
Walser, Tonya C; Jing, Zhe; Tran, Linh M et al. (2018) Silencing the Snail-Dependent RNA Splice Regulator ESRP1 Drives Malignant Transformation of Human Pulmonary Epithelial Cells. Cancer Res 78:1986-1999
Skoulidis, Ferdinandos; Goldberg, Michael E; Greenawalt, Danielle M et al. (2018) STK11/LKB1 Mutations and PD-1 Inhibitor Resistance in KRAS-Mutant Lung Adenocarcinoma. Cancer Discov 8:822-835
Zhou, Xiaorong; Padanad, Mahesh S; Evers, Bret M et al. (2018) Modulation of Mutant KrasG12D -Driven Lung Tumorigenesis In Vivo by Gain or Loss of PCDH7 Function. Mol Cancer Res :

Showing the most recent 10 out of 1059 publications