ed from page 399 of the application) Fellowship training in medical oncology and gynecologic oncology usually emphasizes clinical care and clinical trials. Few graduates of such programs receive training that allows them to develop independent laboratory or translational research programs. Likewise, research specifically related to ovarian cancer is not well represented in the basic sciences. Thus, there is a shortage of physician- scientists and scientists working in ovarian cancer research. This program is designed to develop academic physician-scientists and scientists with research interests in ovarian cancer. To this end, we are budgeting for support of three career development trainees annually. The program has the following objectives: (1) to recruit and train physicians and post-doctoral fellows in research methodologies that will enable them to become competent translational investigators in the field of ovarian cancer; (2) to teach those basic principles of cancer biology that are not commonly included in clinical fellowship training programs or Ph.D. degree programs. It is proposed that these objectives will be accomplished through a strong mentorship program in which trainees are instructed in scientific methods, statistical analysis, biomedical communications, the principles of cancer biology, and strategies to become successful in the translational research of ovarian cancer. Thus, the program will develop trainees who can readily identify basic science findings with translational potential and design protocols for clinical trials based on that translation.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
3P50CA083639-03S1
Application #
6593060
Study Section
Special Emphasis Panel (ZCA1)
Project Start
2001-09-28
Project End
2002-08-31
Budget Start
Budget End
Support Year
3
Fiscal Year
2002
Total Cost
Indirect Cost
Name
University of Texas MD Anderson Cancer Center
Department
Type
DUNS #
001910777
City
Houston
State
TX
Country
United States
Zip Code
77030
Umamaheswaran, Sujanitha; Dasari, Santosh K; Yang, Peiying et al. (2018) Stress, inflammation, and eicosanoids: an emerging perspective. Cancer Metastasis Rev 37:203-211
Wang, Jue; Zhao, Wei; Guo, Huifang et al. (2018) AKT isoform-specific expression and activation across cancer lineages. BMC Cancer 18:742
Huang, Yan; Hu, Wei; Huang, Jie et al. (2018) Inhibiting Nuclear Phospho-Progesterone Receptor Enhances Antitumor Activity of Onapristone in Uterine Cancer. Mol Cancer Ther 17:464-473
Yang, Hailing; Mao, Weiqun; Rodriguez-Aguayo, Cristian et al. (2018) Paclitaxel Sensitivity of Ovarian Cancer Can be Enhanced by Knocking Down Pairs of Kinases that Regulate MAP4 Phosphorylation and Microtubule Stability. Clin Cancer Res 24:5072-5084
Rhyasen, Garrett W; Yao, Yi; Zhang, Jingwen et al. (2018) BRD4 amplification facilitates an oncogenic gene expression program in high-grade serous ovarian cancer and confers sensitivity to BET inhibitors. PLoS One 13:e0200826
Chen, Jian; Zaidi, Sobia; Rao, Shuyun et al. (2018) Analysis of Genomes and Transcriptomes of Hepatocellular Carcinomas Identifies Mutations and Gene Expression Changes in the Transforming Growth Factor-? Pathway. Gastroenterology 154:195-210
Sun, Chaoyang; Yin, Jun; Fang, Yong et al. (2018) BRD4 Inhibition Is Synthetic Lethal with PARP Inhibitors through the Induction of Homologous Recombination Deficiency. Cancer Cell 33:401-416.e8
Hu, Xiaowen; Sood, Anil K; Dang, Chi V et al. (2018) The role of long noncoding RNAs in cancer: the dark matter matters. Curr Opin Genet Dev 48:8-15
Jung, Youn-Sang; Wang, Wenqi; Jun, Sohee et al. (2018) Deregulation of CRAD-controlled cytoskeleton initiates mucinous colorectal cancer via ?-catenin. Nat Cell Biol 20:1303-1314
Jung, Youn-Sang; Jun, Sohee; Kim, Moon Jong et al. (2018) TMEM9 promotes intestinal tumorigenesis through vacuolar-ATPase-activated Wnt/?-catenin signalling. Nat Cell Biol 20:1421-1433

Showing the most recent 10 out of 648 publications