The overall goal of the University of Texas M. D. Anderson Cancer Center (MDACC) SPORE is to reduce the morbidity and mortality of ovarian cancer through innovative translational research in the detection and treatment of ovarian cancer based upon the molecular, cellular and clinical biology of the disease. IVIDACC contains a unique community of >35 talented investigators who are dedicated to translational, clinical, fundamental and population-based ovarian cancer research, 20 of whom participate directly in the SPORE. Collaborators include 25 investigators from 9 universities and 4 companies. Over the last 4 years IVIDACC has cared for 1,055 new patients with ovarian and peritoneal cancer and have placed 241 on clinical trials. MDACC has given high priority to ovarian cancer research through recruitment, salary support, clinical facilities, laboratory space and philanthropic funds. MDACC with the help of the SPORE has recruited 5 outstanding faculty members with an interest in ovarian cancer research, strengthened the research infrastructure, funded 13 developmental research projects (DRP) and supported 4 career development program (DRP) awardees. Over the last 5 years SPORE investigators have contributed 381 peer-reviewed publications regarding ovarian cancer. Achievements include: 1) development of a two-stage screening strategy for early ovarian cancer that has provided a 30% positive predictive value for detecting early stage disease;2) identification of a panel of biomarkers that detect 87% of early stage ovarian cancers;2) discovery of pericytes as targets for anti-angiogenic therapy;3) observation of a 39% response rate with aflibercept (VEGF-Trap) and docetaxel against platinum-resistant disease;4) detection of response to the AKT inhibitor perifosine in ovarian cancers with PTEN mutations;5) discovery that as many as 30% of ovarian cancer patients have BRCA dysfunction;and 6) identification of PVT-1 and PFDN4 as targets for siRNA therapy. Five project proposed for the next grant period will: 1) evaluate a multi-marker algorithm for early detection of ovarian cancer;2) target Dll4/Notch signaling to reverse resistance and synergize with anti-VEGF therapy;3) test personalized therapy of low grade cancer with MEK, AKT and IGFR inhibition;4) personalize treatment for high grade ovarian cancers with activated PI3K signaling or BRCA dysfunction;and 5) develop mesenchymal stem cells as vehicles for tumor tropic delivery of IFN-B in preclinical and clinical studies. This work will be supported by three cores: Administrative;Biostatistics, Bioinformatics and Systems Biology;and Pathology. Support will be provided for DRP and CDP recipients to attain peer-reviewed funding. Valuable advice will continue to be provided by internal, external and advocate advisors.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
2P50CA083639-11
Application #
7939032
Study Section
Special Emphasis Panel (ZCA1-RPRB-M (M1))
Program Officer
Arnold, Julia T
Project Start
1999-09-30
Project End
2015-08-31
Budget Start
2010-09-02
Budget End
2011-08-31
Support Year
11
Fiscal Year
2010
Total Cost
$2,231,452
Indirect Cost
Name
University of Texas MD Anderson Cancer Center
Department
Miscellaneous
Type
Other Domestic Higher Education
DUNS #
800772139
City
Houston
State
TX
Country
United States
Zip Code
77030
Rhyasen, Garrett W; Yao, Yi; Zhang, Jingwen et al. (2018) BRD4 amplification facilitates an oncogenic gene expression program in high-grade serous ovarian cancer and confers sensitivity to BET inhibitors. PLoS One 13:e0200826
Chen, Jian; Zaidi, Sobia; Rao, Shuyun et al. (2018) Analysis of Genomes and Transcriptomes of Hepatocellular Carcinomas Identifies Mutations and Gene Expression Changes in the Transforming Growth Factor-? Pathway. Gastroenterology 154:195-210
Sun, Chaoyang; Yin, Jun; Fang, Yong et al. (2018) BRD4 Inhibition Is Synthetic Lethal with PARP Inhibitors through the Induction of Homologous Recombination Deficiency. Cancer Cell 33:401-416.e8
Hu, Xiaowen; Sood, Anil K; Dang, Chi V et al. (2018) The role of long noncoding RNAs in cancer: the dark matter matters. Curr Opin Genet Dev 48:8-15
Jung, Youn-Sang; Wang, Wenqi; Jun, Sohee et al. (2018) Deregulation of CRAD-controlled cytoskeleton initiates mucinous colorectal cancer via ?-catenin. Nat Cell Biol 20:1303-1314
Jung, Youn-Sang; Jun, Sohee; Kim, Moon Jong et al. (2018) TMEM9 promotes intestinal tumorigenesis through vacuolar-ATPase-activated Wnt/?-catenin signalling. Nat Cell Biol 20:1421-1433
Nagaraja, Archana S; Dood, Robert L; Armaiz-Pena, Guillermo et al. (2018) Adrenergic-mediated increases in INHBA drive CAF phenotype and collagens. JCI Insight 3:
Seo, Hyeonglim; Choi, Ikjang; Whiting, Nicholas et al. (2018) Hyperpolarized Porous Silicon Nanoparticles: Potential Theragnostic Material for 29 Si Magnetic Resonance Imaging. Chemphyschem 19:2143-2147
Mitamura, T; Pradeep, S; McGuire, M et al. (2018) Induction of anti-VEGF therapy resistance by upregulated expression of microseminoprotein (MSMP). Oncogene 37:722-731
Yuan, Jiao; Hu, Zhongyi; Mahal, Brandon A et al. (2018) Integrated Analysis of Genetic Ancestry and Genomic Alterations across Cancers. Cancer Cell 34:549-560.e9

Showing the most recent 10 out of 648 publications