The Imaging Core will leverage the significant resources existing at UCLA focused on molecular imaging technologies in order to provide SPORE investigators with state-of-the-art imaging tools and assays for pre-clinical and clinical prostate cancer studies. The core includes the technologies of micro positron emission tomography (microPET), micro computed tomography (microCT), digital whole-body autoradiography (DWBA), and clinical PET. These tools when properly utilized should allow for the study of pre-clinical models of prostate cancer as well as human imaging of prostate cancer. Utilizing reporter gene technology developed at UCLA it will be possible to mark prostate cells ex vivo and track them in vivo. Additionally, utilizing reporter genes it will be possible to monitor gene therapy non-invasively. MicroCT will allow anatomical localization of metastases in small mouse models as well as longitudinal monitoring of these metastases. Several other tracers should also allow the study of prostate cancer in vivo. The Imaging Core will- help SPORE investigators to design, implement, archives and analyze their imaging data. The Core will- be jointly directed by Dr. Sam Gambbir and Marc Seltzer both of whom have may years of experience -in functional imaging. The imaging technologies all exist within the UCLA Medical Center for Health Sciences, and image review will be possible both at the Imaging Core and remotely at any investigators desktop computer using imaging software developed at UCLA. The Imaging Core will be dedicated to providing a user-friendly, easy access, and cutting-edge facility for advancing research in prostate cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
1P50CA092131-01A1
Application #
6689888
Study Section
Special Emphasis Panel (ZCA1)
Project Start
2002-09-15
Project End
2007-06-30
Budget Start
Budget End
Support Year
1
Fiscal Year
2002
Total Cost
Indirect Cost
Name
University of California Los Angeles
Department
Type
DUNS #
119132785
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Tan, Nelly; Shen, Luyao; Khoshnoodi, Pooria et al. (2018) Pathological and 3 Tesla Volumetric Magnetic Resonance Imaging Predictors of Biochemical Recurrence after Robotic Assisted Radical Prostatectomy: Correlation with Whole Mount Histopathology. J Urol 199:1218-1223
Donin, Nicholas M; Reiter, Robert E (2018) Why Targeting PSMA Is a Game Changer in the Management of Prostate Cancer. J Nucl Med 59:177-182
Nagarajan, Mahesh B; Raman, Steven S; Lo, Pechin et al. (2018) Building a high-resolution T2-weighted MR-based probabilistic model of tumor occurrence in the prostate. Abdom Radiol (NY) 43:2487-2496
Calais, Jeremie; Fendler, Wolfgang P; Eiber, Matthias et al. (2018) Impact of 68Ga-PSMA-11 PET/CT on the Management of Prostate Cancer Patients with Biochemical Recurrence. J Nucl Med 59:434-441
Vidal, Adriana C; Howard, Lauren E; de Hoedt, Amanda et al. (2018) Neutrophil, lymphocyte and platelet counts, and risk of prostate cancer outcomes in white and black men: results from the SEARCH database. Cancer Causes Control 29:581-588
Vidal, Adriana C; Howard, Lauren E; de Hoedt, Amanda et al. (2018) Obese patients with castration-resistant prostate cancer may be at a lower risk of all-cause mortality: results from the Shared Equal Access Regional Cancer Hospital (SEARCH) database. BJU Int 122:76-82
Jelinek, David; Flores, Aimee; Uebelhoer, Melanie et al. (2018) Mapping Metabolism: Monitoring Lactate Dehydrogenase Activity Directly in Tissue. J Vis Exp :
Lee, John K; Bangayan, Nathanael J; Chai, Timothy et al. (2018) Systemic surfaceome profiling identifies target antigens for immune-based therapy in subtypes of advanced prostate cancer. Proc Natl Acad Sci U S A 115:E4473-E4482
Mitra, Mithun; Lee, Ha Neul; Coller, Hilary A (2018) Determining Genome-wide Transcript Decay Rates in Proliferating and Quiescent Human Fibroblasts. J Vis Exp :
Zou, Yongkang; Qi, Zhi; Guo, Weilong et al. (2018) Cotargeting the Cell-Intrinsic and Microenvironment Pathways of Prostate Cancer by PI3K?/?/? Inhibitor BAY1082439. Mol Cancer Ther 17:2091-2099

Showing the most recent 10 out of 339 publications