The purpose of the Animal Models Core facility is to support and centralize certain aspects of the work in each project proposed. It is our belief that prostate cancer biology is best studied in animal model systems that allow experimental monitoring of progression events such as metastasis and androgen-independent progression. This facility brings together expertise in mouse genetics and human tumor xenografs that will allow basic molecular biological questions to be addressed in state-of-the art model systems with direct relevance to the clinical situation. It also offers an opportunity for translational research questions to be addressed immediately in relevant pre-clinical models. The Core consists of five distinct components which will allow biologically based hypotheses to be tested in human prostate cancer xenografs.
The Specific Aims of this Core are as follows: 1. To provide SCID mice to the five research projects 2. To propagate four human prostate cancer xenografts: LAPC4, LAPC9, CWR22, and LUCAP on SCID mice for Investigators in the SPORE. 3. To maintain model mice, such as Pten heterozygotes (Pten+/-) and conditional knock-out (Pten loxp/loxp) needed for each project. 4. To provide technical assistance for in vivo experiments, such as harvest xenografts, measure PSA level, and inject pro-drugs for pre-clinical trials. 5. To provide expertise/consultation on animal experimentation and surgical techniques required for the proposed studies.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
1P50CA092131-01A1
Application #
6689889
Study Section
Special Emphasis Panel (ZCA1)
Project Start
2002-09-15
Project End
2007-06-30
Budget Start
Budget End
Support Year
1
Fiscal Year
2002
Total Cost
Indirect Cost
Name
University of California Los Angeles
Department
Type
DUNS #
119132785
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Vidal, Adriana C; Howard, Lauren E; de Hoedt, Amanda et al. (2018) Neutrophil, lymphocyte and platelet counts, and risk of prostate cancer outcomes in white and black men: results from the SEARCH database. Cancer Causes Control 29:581-588
Vidal, Adriana C; Howard, Lauren E; de Hoedt, Amanda et al. (2018) Obese patients with castration-resistant prostate cancer may be at a lower risk of all-cause mortality: results from the Shared Equal Access Regional Cancer Hospital (SEARCH) database. BJU Int 122:76-82
Jelinek, David; Flores, Aimee; Uebelhoer, Melanie et al. (2018) Mapping Metabolism: Monitoring Lactate Dehydrogenase Activity Directly in Tissue. J Vis Exp :
Lee, John K; Bangayan, Nathanael J; Chai, Timothy et al. (2018) Systemic surfaceome profiling identifies target antigens for immune-based therapy in subtypes of advanced prostate cancer. Proc Natl Acad Sci U S A 115:E4473-E4482
Mitra, Mithun; Lee, Ha Neul; Coller, Hilary A (2018) Determining Genome-wide Transcript Decay Rates in Proliferating and Quiescent Human Fibroblasts. J Vis Exp :
Zou, Yongkang; Qi, Zhi; Guo, Weilong et al. (2018) Cotargeting the Cell-Intrinsic and Microenvironment Pathways of Prostate Cancer by PI3K?/?/? Inhibitor BAY1082439. Mol Cancer Ther 17:2091-2099
Henning, Susanne M; Galet, Colette; Gollapudi, Kiran et al. (2018) Phase II prospective randomized trial of weight loss prior to radical prostatectomy. Prostate Cancer Prostatic Dis 21:212-220
Miller, Eric T; Salmasi, Amirali; Reiter, Robert E (2018) Anatomic and Molecular Imaging in Prostate Cancer. Cold Spring Harb Perspect Med 8:
Navarro, Héctor I; Goldstein, Andrew S (2018) HoxB13 mediates AR-V7 activity in prostate cancer. Proc Natl Acad Sci U S A 115:6528-6529
Mitra, Mithun; Ho, Linda D; Coller, Hilary A (2018) An In Vitro Model of Cellular Quiescence in Primary Human Dermal Fibroblasts. Methods Mol Biol 1686:27-47

Showing the most recent 10 out of 339 publications