Imaging studies offer the potential for noninvasive detection of key molecules that are important in cancer biology and critical to the advancement of medicine. The goal of the Core Facility CF4. Koutcher: Animal Imaging is to provide imaging research support to SPORE investigators who are involved in defining prostate cancer signature, often at the molecular level. Imaging studies may serve as a noninvasive phenotypic correlate of the molecular changes. The primary responsibility of CF4. Koutcher: Animal Imaging will be to provide PET, and magnetic resonance (MR) imaging/spectroscopy capability at the highest spatial resolution possible to monitor the effect of molecular changes. We will upgrade our MR equipment with stronger gradients (28 G/cm insert has just been delivered; 100 G/cm insert for higher spatial resolution is proposed), NIH funding has been obtained for a new spectrometer console to replace our antiquated system. A new vertical bore 500 MHZ system with dedicated microscopy insert is being planned and will provide higher signal to noise and further improvements in image resolution. A new MicroPet has been ordered and delivery is expected shortly. This instrument will have isotropic 2-mm resolution (voxel = 8mm3). The MicroPET will be used to study llC-choline, llC-methionine, 18F-fluorodeoxyglucose, 18F-fluorodihydrotestosterone and 124Iiododeoxyuridine and the imaging studies will be correlated with pathologic data. Quantitative autoradiography equipment has also been upgraded and will complement the PET and MR. The upgrade to the QAR system will allow simultaneous imaging of three nuclei within the same sample. Further support, e.g., physiological monitoring, image correlation, will be necessary for the successful implementation of this project and will need to be developed. As a core facility, a main goal will be providing state-of-the-art imaging capability. This will include in vivo spatial resolution of between 50 to 100?u in plane and 0.25-0.5 mm slice thickness for MR, greater than 8mm3 voxels for the MicroPET and 3 nuclide imaging in QAR. To increase MR spatial resolution further, more sensitive radio-frequency coils will be designed. Improvements in image processing and analysis to enhance the accuracy of multi-modality imaging will also be necessary. The lack of anatomical detail provided by PET necessitates the development of good software for correlating PET, MRI, and QAR data, in addition to histochemical/anatomic data.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
3P50CA092629-02S1
Application #
6664526
Study Section
Special Emphasis Panel (ZCA1)
Project Start
2002-09-10
Project End
2003-08-31
Budget Start
Budget End
Support Year
2
Fiscal Year
2002
Total Cost
Indirect Cost
Name
Sloan-Kettering Institute for Cancer Research
Department
Type
DUNS #
064931884
City
New York
State
NY
Country
United States
Zip Code
10065
Moore, Amanda R; Ran, Leili; Guan, Youxin et al. (2018) GNA11 Q209L Mouse Model Reveals RasGRP3 as an Essential Signaling Node in Uveal Melanoma. Cell Rep 22:2455-2468
Carlsson, Sigrid V; Lilja, Hans (2018) Perspective on Prostate Cancer Screening. Clin Chem :
Puca, Loredana; Bareja, Rohan; Prandi, Davide et al. (2018) Patient derived organoids to model rare prostate cancer phenotypes. Nat Commun 9:2404
Currall, Benjamin B; Chen, Ming; Sallari, Richard C et al. (2018) Loss of LDAH associated with prostate cancer and hearing loss. Hum Mol Genet 27:4194-4203
Armenia, Joshua; Wankowicz, Stephanie A M; Liu, David et al. (2018) The long tail of oncogenic drivers in prostate cancer. Nat Genet 50:645-651
Chen, Yu; Chi, Ping (2018) Basket trial of TRK inhibitors demonstrates efficacy in TRK fusion-positive cancers. J Hematol Oncol 11:78
McDevitt, Michael R; Thorek, Daniel L J; Hashimoto, Takeshi et al. (2018) Feed-forward alpha particle radiotherapy ablates androgen receptor-addicted prostate cancer. Nat Commun 9:1629
Audenet, François; Vertosick, Emily A; Fine, Samson W et al. (2018) Biopsy Core Features are Poor Predictors of Adverse Pathology in Men with Grade Group 1 Prostate Cancer. J Urol 199:961-968
Hugosson, Jonas; Godtman, Rebecka Arnsrud; Carlsson, Sigrid V et al. (2018) Eighteen-year follow-up of the Göteborg Randomized Population-based Prostate Cancer Screening Trial: effect of sociodemographic variables on participation, prostate cancer incidence and mortality. Scand J Urol 52:27-37
Kohestani, Kimia; Chilov, Marina; Carlsson, Sigrid V (2018) Prostate cancer screening-when to start and how to screen? Transl Androl Urol 7:34-45

Showing the most recent 10 out of 505 publications