The overall role of the Bioinformatics Core is to provide SPORE investigators with bioinformatics support services. These services include high-throughput data (microarray and sequence) processing and analysis, often involving statistical and probabilistic analyses, developing ad hoc software and databases, and performing computer simulations. Analyses not involving high-throughput data (e.g., clinical correlations) will be performed by the SPORE Biostatistics Core.
The specific aims of the Bioinformatics Core are 1. To generate gene expression signatures from global lllumina and Affymetrix gene expression microarrays. 2. To describe the biological characteristics and prognostic ability of gene expression signatures through a wide range of functional and pathway analyses. 3. To generate copy number alteration (CNA) profiles from global ahd targeted Agilent array comparative genomic hybridization (aCGH) microarrays. 4. To design custom Agilent aCGH arrays that target specific cancer-associated genes and pathways.

Public Health Relevance

The Bioinformatics Core forms an integral part of the SPORE in Prostate Cancer as it directly supports the timely conduct of research in 3 RPs. The centralization of various bioinformatics services is designed to streamline requests of SPORE investigators to Core personnel with particular areas of expertise, therefore ensuring that services are provided in an efficient manner and with the highest quality.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA092629-13
Application #
8567067
Study Section
Special Emphasis Panel (ZCA1-RPRB-M)
Project Start
Project End
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
13
Fiscal Year
2013
Total Cost
$88,163
Indirect Cost
$39,960
Name
Sloan-Kettering Institute for Cancer Research
Department
Type
DUNS #
064931884
City
New York
State
NY
Country
United States
Zip Code
10065
Capogrosso, Paolo; Vertosick, Emily A; Benfante, Nicole E et al. (2018) Are We Improving Erectile Function Recovery After Radical Prostatectomy? Analysis of Patients Treated over the Last Decade. Eur Urol :
Lee, Justin K; Sjoberg, Daniel D; Miller, Mariam Imnadze et al. (2018) Improved Recovery of Erectile Function in Younger Men after Radical Prostatectomy: Does it Justify Immediate Surgery in Low-risk Patients? Eur Urol 73:33-37
Autio, Karen A; Dreicer, Robert; Anderson, Justine et al. (2018) Safety and Efficacy of BIND-014, a Docetaxel Nanoparticle Targeting Prostate-Specific Membrane Antigen for Patients With Metastatic Castration-Resistant Prostate Cancer: A Phase 2 Clinical Trial. JAMA Oncol 4:1344-1351
Heller, Glenn; McCormack, Robert; Kheoh, Thian et al. (2018) Circulating Tumor Cell Number as a Response Measure of Prolonged Survival for Metastatic Castration-Resistant Prostate Cancer: A Comparison With Prostate-Specific Antigen Across Five Randomized Phase III Clinical Trials. J Clin Oncol 36:572-580
Xie, Yuanyuan; Cao, Zhen; Wong, Elissa Wp et al. (2018) COP1/DET1/ETS axis regulates ERK transcriptome and sensitivity to MAPK inhibitors. J Clin Invest 128:1442-1457
Abida, Wassim; Sawyers, Charles L (2018) Targeting DNA Repair in Prostate Cancer. J Clin Oncol 36:1017-1019
Kaittanis, Charalambos; Andreou, Chrysafis; Hieronymus, Haley et al. (2018) Prostate-specific membrane antigen cleavage of vitamin B9 stimulates oncogenic signaling through metabotropic glutamate receptors. J Exp Med 215:159-175
Moore, Amanda R; Ran, Leili; Guan, Youxin et al. (2018) GNA11 Q209L Mouse Model Reveals RasGRP3 as an Essential Signaling Node in Uveal Melanoma. Cell Rep 22:2455-2468
Carlsson, Sigrid V; Lilja, Hans (2018) Perspective on Prostate Cancer Screening. Clin Chem :
Puca, Loredana; Bareja, Rohan; Prandi, Davide et al. (2018) Patient derived organoids to model rare prostate cancer phenotypes. Nat Commun 9:2404

Showing the most recent 10 out of 505 publications