The overall purpose of the Animal Models Core (Core D) is to facilitate the accomplishment of the translational research goals and objectives of the SPORE by providing investigators with assistance in the design and generation of transgenic and knockout/knockin mouse strains, a centralized repository for these mouse strains, and material of common interest, such as dissected tissues, DNA, RNA, or protein extracts from these mouse strains.
The specific aims of the Animal Models Core are to: 1. Generate and provide genetically engineered mouse models and patient-derived xenograft models as needed by SPORE investigators. 2. Provide small animal imaging, histopathologic analyses of tumor specimens, design and conduct preclinical trials, and serve as a repository and breeding service of mouse strains as requested by SPORE investigators. 3. Provide SPORE laboratories with dissected tissue specimens, DNA, RNA, and proteins from the various mouse models utilized by our investigators.

Public Health Relevance

The Animal Models Core is an essential component of our SPORE in Prostate Cancer because it facilitates the timely conduct of research by centralizing services designed to prioritize the needs of our SPORE investigators: maintaining colonies of mice ready for use in preclinical studies and procuring and banking tissue from these mice for characterization of molecular markers and for RNA, DNA, and protein studies.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA092629-20
Application #
9998853
Study Section
Special Emphasis Panel (ZCA1)
Project Start
2001-09-14
Project End
2021-08-31
Budget Start
2020-09-01
Budget End
2021-08-31
Support Year
20
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Sloan-Kettering Institute for Cancer Research
Department
Type
DUNS #
064931884
City
New York
State
NY
Country
United States
Zip Code
10065
Assel, Melissa J; Gerdtsson, Axel; Thorek, Daniel L J et al. (2018) Long-term prediction of prostate cancer diagnosis and death using PSA and obesity related anthropometrics at early middle age: data from the malmö preventive project. Oncotarget 9:5778-5785
Ran, Leili; Chen, Yuedan; Sher, Jessica et al. (2018) FOXF1 Defines the Core-Regulatory Circuitry in Gastrointestinal Stromal Tumor. Cancer Discov 8:234-251
Kinsella, Netty; Stattin, Pär; Cahill, Declan et al. (2018) Factors Influencing Men's Choice of and Adherence to Active Surveillance for Low-risk Prostate Cancer: A Mixed-method Systematic Review. Eur Urol 74:261-280
Li, Weiqiang; Middha, Mridu; Bicak, Mesude et al. (2018) Genome-wide Scan Identifies Role for AOX1 in Prostate Cancer Survival. Eur Urol 74:710-719
Aras, Omer; Pearce, Gillian; Watkins, Adam J et al. (2018) An in-vivo pilot study into the effects of FDG-mNP in cancer in mice. PLoS One 13:e0202482
Sjoberg, Daniel D; Vickers, Andrew J; Assel, Melissa et al. (2018) Twenty-year Risk of Prostate Cancer Death by Midlife Prostate-specific Antigen and a Panel of Four Kallikrein Markers in a Large Population-based Cohort of Healthy Men. Eur Urol 73:941-948
Vickers, Andrew J; Young-Afat, Danny A; Ehdaie, Behfar et al. (2018) Just-in-time consent: The ethical case for an alternative to traditional informed consent in randomized trials comparing an experimental intervention with usual care. Clin Trials 15:3-8
Assel, Melissa; Dahlin, Anders; Ulmert, David et al. (2018) Association Between Lead Time and Prostate Cancer Grade: Evidence of Grade Progression from Long-term Follow-up of Large Population-based Cohorts Not Subject to Prostate-specific Antigen Screening. Eur Urol 73:961-967
Han, SoHyun; Stoyanova, Radka; Lee, Hansol et al. (2018) Automation of pattern recognition analysis of dynamic contrast-enhanced MRI data to characterize intratumoral vascular heterogeneity. Magn Reson Med 79:1736-1744
Vickers, Andrew J; Steineck, Gunnar (2018) Prognosis, Effect Modification, and Mediation. Eur Urol 74:243-245

Showing the most recent 10 out of 505 publications