Molecular Imaging Reporter Core (MIRC);Director: D. Piwnlea-Worms. The Molecular Imaging Reporter Core (MIRC) is a central facility (See GENERAL RESOURCES AND ENVIRONMENT). David Piwnica-Worms, P50 PI also serves as Reporter Core Director. Andrea Pichler, Ph.D., is the Molecular Imaging Reporter Core Scientific Co-Director. Dr. Pichler is a WU trained molecular imaging scientist with a formal background in molecular and cell biology. She will be the primary scientific investigator in cloning reporter genes, engineering constructs, and managing a catalog of vector systems for general use in reporting the regulation of genes of interest for scientists involved with ICMIC activities. She also actively participates in discovery research projects. The MIRC not only develops and generates new reporter constructs, cell lines and geneticallyengineered animals, but also provides expertise, materials and collaborative assistance for design and execution of the biological aspects of molecular imaging. The MIRC serves investigators with a wide range of resources and experience in molecular biology, mammalian cell culture, and small animal experimentation. One of the most important service activities of this core is dissemination of our newly developed molecular imaging reagents and genetically-encoded reporters to investigators within our institution, to other P50 program sites and to cancer biology investigators throughout the world (Figure 1). The MIRC has been and continues to be one of our most productive and comprehensive cores, impacting a broad range of programs throughout the world through our discovery research activities.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA094056-11
Application #
8233026
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2011-01-01
Budget End
2011-12-31
Support Year
11
Fiscal Year
2011
Total Cost
$277,080
Indirect Cost
Name
Washington University
Department
Type
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Miller, Jessica; Wang, Steven T; Orukari, Inema et al. (2018) Perfusion-based fluorescence imaging method delineates diverse organs and identifies multifocal tumors using generic near-infrared molecular probes. J Biophotonics 11:e201700232
Zacharias, Niki; Lee, Jaehyuk; Ramachandran, Sumankalai et al. (2018) Androgen Receptor Signaling in Castration-Resistant Prostate Cancer Alters Hyperpolarized Pyruvate to Lactate Conversion and Lactate Levels In Vivo. Mol Imaging Biol :
Cherian, Mathew A; Olson, Sydney; Sundaramoorthi, Hemalatha et al. (2018) An activating mutation of interferon regulatory factor 4 (IRF4) in adult T-cell leukemia. J Biol Chem 293:6844-6858
Hövener, Jan-Bernd; Pravdivtsev, Andrey N; Kidd, Bryce et al. (2018) Parahydrogen-Based Hyperpolarization for Biomedicine. Angew Chem Int Ed Engl 57:11140-11162
Bauerle, Kevin T; Hutson, Irina; Scheller, Erica L et al. (2018) Glucocorticoid Receptor Signaling Is Not Required for In Vivo Adipogenesis. Endocrinology 159:2050-2061
Prudner, Bethany Cheree; Sun, Fangdi; Kremer, Jeffrey Charles et al. (2018) Amino Acid Uptake Measured by [18F]AFETP Increases in Response to Arginine Starvation in ASS1-Deficient Sarcomas. Theranostics 8:2107-2116
Meinerz, Kelsey; Beeman, Scott C; Duan, Chong et al. (2018) Bayesian Modeling of NMR Data: Quantifying Longitudinal Relaxation in Vivo, and in Vitro with a Tissue-Water-Relaxation Mimic (Crosslinked Bovine Serum Albumin). Appl Magn Reson 49:3-24
Zheleznyak, Alexander; Shokeen, Monica; Achilefu, Samuel (2018) Nanotherapeutics for multiple myeloma. Wiley Interdiscip Rev Nanomed Nanobiotechnol 10:e1526
Choi, Jaebok; Cooper, Matthew L; Staser, Karl et al. (2018) Baricitinib-induced blockade of interferon gamma receptor and interleukin-6 receptor for the prevention and treatment of graft-versus-host disease. Leukemia 32:2483-2494
Kotagiri, Nalinikanth; Cooper, Matthew L; Rettig, Michael et al. (2018) Radionuclides transform chemotherapeutics into phototherapeutics for precise treatment of disseminated cancer. Nat Commun 9:275

Showing the most recent 10 out of 283 publications