The specific aims of the Clinical Trials Core are 1) to assist investigators in the development and implementation of clinical translational trials conducted by projects within the SPORE; 2) to assist clinical investigators in the conduct of those clinical trials; 3) to ensure timely, accurate, and thorough collection and entry of clinical data into database management systems created and maintained by the Biomedical Informatics Core; 4) to monitor and assure the safety of research subjects, adherence to institutional and federal regulatory requirements, and compliance with protocol-specified activities; 5) to provide information, both on request and on an outreach basis, to patients, families, and health care professionals regarding clinical trials being conducted under this and other GI SPOREs; and 6) to monitor inquiries and track accrual to SPORE clinical trials. Establishment of a Clinical Trials Core will build upon already established mechanisms for clinical trial support at Vanderbilt including the Clinical Trials Shared Resource, the Clinical Protocol Review and Monitoring Committee of the VICCC, the VICCC Affiliate Network, and the Institutional Review Board of Vanderbilt University. The creation of a Clinical Trials Core within this GI SPORE grant is made necessary by the intensive needs and specialized nature of the clinical translational research projects described in this application.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
1P50CA095103-01
Application #
6689448
Study Section
Special Emphasis Panel (ZCA1)
Project Start
2002-09-24
Project End
2007-04-30
Budget Start
Budget End
Support Year
1
Fiscal Year
2002
Total Cost
Indirect Cost
Name
Vanderbilt University Medical Center
Department
Type
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37203
Davenport, James R; Su, Timothy; Zhao, Zhiguo et al. (2018) Modifiable lifestyle factors associated with risk of sessile serrated polyps, conventional adenomas and hyperplastic polyps. Gut 67:456-465
Liu, Qi; Herring, Charles A; Sheng, Quanhu et al. (2018) Quantitative assessment of cell population diversity in single-cell landscapes. PLoS Biol 16:e2006687
Means, Anna L; Freeman, Tanner J; Zhu, Jing et al. (2018) Epithelial Smad4 Deletion Up-Regulates Inflammation and Promotes Inflammation-Associated Cancer. Cell Mol Gastroenterol Hepatol 6:257-276
Weiss, Vivian L; Kiernan, Colleen; Wright, Jesse et al. (2018) Fine-Needle Aspiration-Based Grading of Pancreatic Neuroendocrine Neoplasms Using Ki-67: Is Accurate WHO Grading Possible on Cytologic Material? J Am Soc Cytopathol 7:154-459
Roberts, Jordan; Gonzalez, Raul S; Revetta, Frank et al. (2018) Mesenteric tumour deposits arising from small-intestine neuroendocrine tumours are frequently associated with fibrosis and IgG4-expressing plasma cells. Histopathology 73:795-800
Gibson, William E; Gonzalez, Raul S; Cates, Justin M M et al. (2018) Hepatic micrometastases are associated with poor prognosis in patients with liver metastases from neuroendocrine tumors of the digestive tract. Hum Pathol 79:109-115
Fenix, Aidan M; Neininger, Abigail C; Taneja, Nilay et al. (2018) Muscle-specific stress fibers give rise to sarcomeres in cardiomyocytes. Elife 7:
Wang, Jing; Zhao, Yue; Zhou, Xiaofan et al. (2018) Nascent RNA sequencing analysis provides insights into enhancer-mediated gene regulation. BMC Genomics 19:633
Burns, Michael C; Howes, Jennifer E; Sun, Qi et al. (2018) High-throughput screening identifies small molecules that bind to the RAS:SOS:RAS complex and perturb RAS signaling. Anal Biochem 548:44-52
Herring, Charles A; Banerjee, Amrita; McKinley, Eliot T et al. (2018) Unsupervised Trajectory Analysis of Single-Cell RNA-Seq and Imaging Data Reveals Alternative Tuft Cell Origins in the Gut. Cell Syst 6:37-51.e9

Showing the most recent 10 out of 447 publications