The Pacific Northwest Prostate Cancer SPORE is a coordinated effort of four institutions with strong programs in prostate cancer research and career development: 1) the Fred Hutchinson Cancer Research Center (FHCRC); 2) the University of Washington (UW) and its affiliated institutions; 3) the Institute for Systems Biology (ISB); and 4) the University of British Columbia and the Prostate Center & Institute of Vancouver General Hospital. These three Seattle-based and the British Columbia (BC)-based institutions have a large number of investigators and laboratories dedicated to prostate cancer (CAP) research. Within this milieu, there already exists substantial technical infrastructure (e.g., genomics), strong multidisciplinary expertise (e.g., molecular biology, biochemistry, epidemiology, genetics, medical & radiation oncology, urology), and extensive resources (e.g., serum, DNA & tissue banks, CaP animal model facilities, CaP genomic arrays, and a CaP clinical trials organization). All four institutions have, and are in the process of generating, increasing resources for programs in translational CaP research and are committed to contributing significant resources toward the goals of this SPORE. The purpose of the SPORE is not only to perform the research projects proposed, but in a larger sense to form the """"""""central supporting piece"""""""" to a large developing """"""""mosaic"""""""" of coordinated translational CaP research in the Pacific Northwest. We believe the projects to be innovative and translational. Project 1 is a population-based study evaluating specific genetic polymorphisms in relation to CaP progression/mortality. Project 2 aims to characterize molecular alterations (karyotype, transcript) of disseminated CaP cells in the context of influencing the clinical management of patients as diagnostic and prognostic indicators. Project 3 will identify critical determinants of the transition from androgen-dependent to androgen-independent CaP, and will validate these findings in well-characterized pre-clinical models and clinical trials. Project 4 seeks to expand our already extensive work on the genomics of CaP and will determine if tumor gene expression profiles can predict the course of disease and response to cytotoxic chemotherapy. We have proposed five Cores in support of these projects (Administration, Specimen/Tissue, Biostatistics, Informatics & Gene Expression, and Clinical Research). The Career Development and Pilot Project Programs we propose will significantly embellish and strengthen the translational orientation of our prostate cancer research and expand opportunities for new investigators.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA097186-05
Application #
7096579
Study Section
Special Emphasis Panel (ZCA1-GRB-V (M1))
Program Officer
Hruszkewycz, Andrew M
Project Start
2002-09-19
Project End
2007-08-31
Budget Start
2006-05-01
Budget End
2007-08-31
Support Year
5
Fiscal Year
2006
Total Cost
$2,523,922
Indirect Cost
Name
Fred Hutchinson Cancer Research Center
Department
Type
DUNS #
078200995
City
Seattle
State
WA
Country
United States
Zip Code
98109
Lim, Daniel M; Gulati, Roman; Aleshin-Guendel, Serge et al. (2018) Undetectable prostate-specific antigen after short-course androgen deprivation therapy for biochemically recurrent patients correlates with metastasis-free survival and prostate cancer-specific survival. Prostate :
Sehrawat, Archana; Gao, Lina; Wang, Yuliang et al. (2018) LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc Natl Acad Sci U S A 115:E4179-E4188
FitzGerald, L M; Zhao, S; Leonardson, A et al. (2018) Germline variants in IL4, MGMT and AKT1 are associated with prostate cancer-specific mortality: An analysis of 12,082 prostate cancer cases. Prostate Cancer Prostatic Dis 21:228-237
Lee, Chung C W; Munuganti, Ravi Shashi Nayana; Peacock, James W et al. (2018) Targeting Semaphorin 3C in Prostate Cancer With Small Molecules. J Endocr Soc 2:1381-1394
Mostaghel, Elahe A (2018) Alternative Acts: Oncogenic Splicing of Steroidogenic Enzymes in Prostate Cancer. Clin Cancer Res :
Zhao, Shanshan; Leonardson, Amy; Geybels, Milan S et al. (2018) A five-CpG DNA methylation score to predict metastatic-lethal outcomes in men treated with radical prostatectomy for localized prostate cancer. Prostate :
Uo, Takuma; Plymate, Stephen R; Sprenger, Cynthia C (2018) The potential of AR-V7 as a therapeutic target. Expert Opin Ther Targets 22:201-216
Bello, Thomas; Gujral, Taranjit S (2018) KInhibition: A Kinase Inhibitor Selection Portal. iScience 8:49-53
Viswanathan, Srinivas R; Ha, Gavin; Hoff, Andreas M et al. (2018) Structural Alterations Driving Castration-Resistant Prostate Cancer Revealed by Linked-Read Genome Sequencing. Cell 174:433-447.e19
Armenia, Joshua; Wankowicz, Stephanie A M; Liu, David et al. (2018) The long tail of oncogenic drivers in prostate cancer. Nat Genet 50:645-651

Showing the most recent 10 out of 400 publications