The Biospecimen and Pathology Core provides part of the infrastructure support for the major projects comprising the Pacific Northwest Prostate Cancer SPORE as well as for research conducted through the developmental research and career enhancement programs. It has been designed to meet the needs of these projects and serve as a resource for collaborative efforts with other SPOREs. This Core will provide a systematic and standardized system of specimen collection, storage, distribution and related clinical/research information dissemination that is based on over two decades of experience. There will be consistency and quality assurance in the pathological analysis of tissue specimens. This Core has 5 components: 1. Clinical specimen acquisition (i.e. tissues, including those from surgery and the rapid autopsy program, serum, plasma and urine), processing, quality control, storage, distribution and database entry; 2. A program to continually improve the quality and efficiency of biospecimen acquisition, processing and storage to increase the fidelity of specimens provided to the SPORE investigators; 3. Maintain prostate cancer xenograft lines established by the Core and make specimens available for biological study and/or perform pre-clinical studies for SPORE investigators and collaborators; 4. Laboratory services, including production of tissue microarrays, interpretation of immunohistology by urologic pathologists, production of specimen derivatives and perform PSA immunoassays for research; 5. An administrative program to obtain samples from minorities, prioritize the distribution of specimens, ensure patient confidentiality and compliance with IRB requirements, maintain and improve quality control measures and interact with other SPOREs. Specimens from our repository, especially those from our rapid autopsy program (e.g. PC bone metastases) and our LuCaP series of prostate cancer xenografts have been, and will continue to be distributed to other PC investigators on an international basis.

Public Health Relevance

The performance of translational research mandates that investigators have ready access to well documented clinical specimens and relevant biological models. The Biospecimen Core directors have decades of experience in recognizing these needs and providing such services not only to local investigators but to those who request specimens on a world-wide basis these interactions will continue. This will truly enhance the translational aspects of our NW Prostate Cancer SPORE.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA097186-18
Application #
10016181
Study Section
Special Emphasis Panel (ZCA1)
Project Start
2002-09-19
Project End
2023-08-31
Budget Start
2020-09-01
Budget End
2021-08-31
Support Year
18
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Fred Hutchinson Cancer Research Center
Department
Type
DUNS #
078200995
City
Seattle
State
WA
Country
United States
Zip Code
98109
Dai, James Y; Wang, Bo; Wang, Xiaoyu et al. (2018) Vigorous physical activity is associated with metastatic-lethal progression in prostate cancer and differential tumor DNA methylation in the CRACR2A gene. Cancer Epidemiol Biomarkers Prev :
Mateo, Joaquin; Cheng, Heather H; Beltran, Himisha et al. (2018) Clinical Outcome of Prostate Cancer Patients with Germline DNA Repair Mutations: Retrospective Analysis from an International Study. Eur Urol 73:687-693
Lim, Daniel M; Gulati, Roman; Aleshin-Guendel, Serge et al. (2018) Undetectable prostate-specific antigen after short-course androgen deprivation therapy for biochemically recurrent patients correlates with metastasis-free survival and prostate cancer-specific survival. Prostate :
Sehrawat, Archana; Gao, Lina; Wang, Yuliang et al. (2018) LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc Natl Acad Sci U S A 115:E4179-E4188
FitzGerald, L M; Zhao, S; Leonardson, A et al. (2018) Germline variants in IL4, MGMT and AKT1 are associated with prostate cancer-specific mortality: An analysis of 12,082 prostate cancer cases. Prostate Cancer Prostatic Dis 21:228-237
Lee, Chung C W; Munuganti, Ravi Shashi Nayana; Peacock, James W et al. (2018) Targeting Semaphorin 3C in Prostate Cancer With Small Molecules. J Endocr Soc 2:1381-1394
Mostaghel, Elahe A (2018) Alternative Acts: Oncogenic Splicing of Steroidogenic Enzymes in Prostate Cancer. Clin Cancer Res :
Zhao, Shanshan; Leonardson, Amy; Geybels, Milan S et al. (2018) A five-CpG DNA methylation score to predict metastatic-lethal outcomes in men treated with radical prostatectomy for localized prostate cancer. Prostate :
Uo, Takuma; Plymate, Stephen R; Sprenger, Cynthia C (2018) The potential of AR-V7 as a therapeutic target. Expert Opin Ther Targets 22:201-216
Bello, Thomas; Gujral, Taranjit S (2018) KInhibition: A Kinase Inhibitor Selection Portal. iScience 8:49-53

Showing the most recent 10 out of 400 publications