The long-term translational goal of this project is to overcome mechanisms of immunoresistance that diminish efficacy of immunotherapy for glioma patients, particularly glloblastoma (GBM). In the previous cycle we completed a Phase I clinical trial and a Phase II clinical trial for recurrent GBM patients immunized with an experimental vaccine, after surgical resection. These trials demonstrated that autologous glioma-derived heat shock protein peptide complex-96 (HSPPC-96) vaccine Is safe, evokes a CD4+ and CD8+ tumor specific T-cell response and Increases survival of recurrent GBM patients as compared to historical controls. In the previous SPORE cycle we also identified proteins that contribute to glioma immunoresistance, including B7-Homologue 1 (B7-H1) that is expressed on the glioma ceil surface, induces CD8+ T- cell apoptosis and Is positively regulated by PI(3)K. Our observations explain how the PI(3)K/B7-H1 pathway can directly inhibit T-cell killing of tumor. In the next cycle of this project we plan to test the hypothesis that Immunosuppressive tumor effects of PI(3)K/B7-H1 pathway activation can also be mediated indirectly, through expansion of the regulatory T cell (Treg) pool (Aim 1) and through expression of B7-H1 protein on tumor infiltrating macrophages (Aim 2) in patients with low grade astrocytoma (LGA), anaplastic astrocytoma (/^A), and GBM. To determine the clinical impact of PI(3)K/B7-H1 pathway activation on response to glioma immunotherapy we will initiate a randomized trial comparing the standard of care (intravenous bevacizumab) to HSPPG-96 combined with bevacizumab in recurrent GBM patients (Aim 3).

Public Health Relevance

Active immunotherapy for GBM patients offers the hope of specificity without toxicity, however peripheral immune responses have not always correlated with clinical success. In the present proposal we will use novel approaches to reverse the immunoresistance in an effort to optimize immunotherapy.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA097257-12
Application #
8760341
Study Section
Special Emphasis Panel (ZCA1-RPRB-7)
Project Start
Project End
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
12
Fiscal Year
2014
Total Cost
$325,621
Indirect Cost
$118,937
Name
University of California San Francisco
Department
Type
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Ostrom, Quinn T; Kinnersley, Ben; Wrensch, Margaret R et al. (2018) Sex-specific glioma genome-wide association study identifies new risk locus at 3p21.31 in females, and finds sex-differences in risk at 8q24.21. Sci Rep 8:7352
Salas, Lucas A; Koestler, Devin C; Butler, Rondi A et al. (2018) An optimized library for reference-based deconvolution of whole-blood biospecimens assayed using the Illumina HumanMethylationEPIC BeadArray. Genome Biol 19:64
Choi, Serah; Yu, Yao; Grimmer, Matthew R et al. (2018) Temozolomide-associated hypermutation in gliomas. Neuro Oncol 20:1300-1309
Jacobs, Daniel I; Liu, Yanhong; Gabrusiewicz, Konrad et al. (2018) Germline polymorphisms in myeloid-associated genes are not associated with survival in glioma patients. J Neurooncol 136:33-39
Berntsson, Shala G; Merrell, Ryan T; Amirian, E Susan et al. (2018) Glioma-related seizures in relation to histopathological subtypes: a report from the glioma international case-control study. J Neurol 265:1432-1442
Goode, Benjamin; Joseph, Nancy M; Stevers, Meredith et al. (2018) Adenomatoid tumors of the male and female genital tract are defined by TRAF7 mutations that drive aberrant NF-kB pathway activation. Mod Pathol 31:660-673
Hayes, Josie; Yu, Yao; Jalbert, Llewellyn E et al. (2018) Genomic analysis of the origins and evolution of multicentric diffuse lower-grade gliomas. Neuro Oncol 20:632-641
Ostrom, Quinn T; Kinnersley, Ben; Armstrong, Georgina et al. (2018) Age-specific genome-wide association study in glioblastoma identifies increased proportion of 'lower grade glioma'-like features associated with younger age. Int J Cancer 143:2359-2366
Pekmezci, Melike; Stevers, Meredith; Phillips, Joanna J et al. (2018) Multinodular and vacuolating neuronal tumor of the cerebrum is a clonal neoplasm defined by genetic alterations that activate the MAP kinase signaling pathway. Acta Neuropathol 135:485-488
Behr, Spencer C; Villanueva-Meyer, Javier E; Li, Yan et al. (2018) Targeting iron metabolism in high-grade glioma with 68Ga-citrate PET/MR. JCI Insight 3:

Showing the most recent 10 out of 362 publications