The canonical Wnt/p-catenin pathway is constitutively activated in multiple myeloma cells and is necessary for their growth and survival. Our work has further demonstrated that the MUC1 oncoprotein is aberrantly expressed in multiple myeloma cells and that the MUC1-C receptor subunit binds directly to pcatenin. The interaction between MUC1-C and p-catenin stabilizes p-catenin and contributes to the nduction of Wnt target genes. The available evidence indicates that MUC1-C functions as a novel chaperone that interacts with effectors, such as p-catenin, that regulate growth and survival. In this regard, other studies have shown that MUC1-C activates the kBa kinase complex and thereby the NF-icB pathway. MUC1-C is also targeted to mitochondria by HSP90 where it attenuates activation of the intrinsic apoptotic response. These findings have supported a model in which MUC1-C functions in integrating Wnt/p-catenin ignaling with other pathways that have been linked to the growth and survival of multiple myeloma cells. Our hypothesis is that targeting the Wnt/p-catenin pathway is a rational approach for the treatment of multiple myeloma. The proposed studies thus focus on the role of MUC1-C in activating Wnt/p-catenin signaling in multiple myeloma cells and on the development of agents that disrupt this pathway. Our work will also define the involvement of MUC1-C in integrating Wnt/p-catenin signaling with activation of the IKKp- >NF-icB pathway and HSP90-dependent targeting of MUC1-C to mitochondria for the development of rationally based combinations. Agents that target the Wnt/p-catenin pathway will thus be studied alone and in combination for effects on myeloma cell growth and survival in the bone marrow microenvironment and in xenograft models. The results of these studies will be used to design clinical trials of Wnt/p-catenin inhibitors alone and in combination for the treatment of patients with refractory multiple myeloma.
The Specific Aims are: 1) To define the role of the MUC1-C receptor in activation of the Wnt/p-catenin pathway in multiple myeloma cells;2) To determine the function of MUC1-C in integrating Wnt/p-catenin signaling with the NF-KB and HSP90 pathways;3) To study the effects of blocking Wnt/p-catenin signaling, alone and in combination, on multiple myeloma cell growth and survival in the bone marrow milieu in vitro and in xenograft models of human multiple myeloma;and 4) To perform Phase l/ll clinical trials of therapies targeting Wnt/p-catenin alone and in combination for the treatment of multiple myeloma. Relevance: The translations! studies and clinical trials proposed in this Project focus on the development of inhibitors of the Wnt/p-catenin pathway as a novel approach alone and in combination for the treatment of multiple myeloma.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA100707-09
Application #
8321870
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2011-09-01
Budget End
2012-08-31
Support Year
9
Fiscal Year
2011
Total Cost
$179,199
Indirect Cost
Name
Dana-Farber Cancer Institute
Department
Type
DUNS #
076580745
City
Boston
State
MA
Country
United States
Zip Code
02215
Ray, A; Das, D S; Song, Y et al. (2018) Combination of a novel HDAC6 inhibitor ACY-241 and anti-PD-L1 antibody enhances anti-tumor immunity and cytotoxicity in multiple myeloma. Leukemia 32:843-846
Guang, Matthew Ho Zhi; McCann, Amanda; Bianchi, Giada et al. (2018) Overcoming multiple myeloma drug resistance in the era of cancer 'omics'. Leuk Lymphoma 59:542-561
Perrot, Aurore; Lauwers-Cances, Valerie; Corre, Jill et al. (2018) Minimal residual disease negativity using deep sequencing is a major prognostic factor in multiple myeloma. Blood 132:2456-2464
Tai, Yu-Tzu; Lin, Liang; Xing, Lijie et al. (2018) APRIL signaling via TACI mediates immunosuppression by T regulatory cells in multiple myeloma: therapeutic implications. Leukemia :
Gonsalves, Wilson I; Buadi, Francis K; Ailawadhi, Sikander et al. (2018) Utilization of hematopoietic stem cell transplantation for the treatment of multiple myeloma: a Mayo Stratification of Myeloma and Risk-Adapted Therapy (mSMART) consensus statement. Bone Marrow Transplant :
Bae, J; Hideshima, T; Zhang, G L et al. (2018) Identification and characterization of HLA-A24-specific XBP1, CD138 (Syndecan-1) and CS1 (SLAMF7) peptides inducing antigens-specific memory cytotoxic T lymphocytes targeting multiple myeloma. Leukemia 32:752-764
Ye, Shuai; Lawlor, Matthew A; Rivera-Reyes, Adrian et al. (2018) YAP1-Mediated Suppression of USP31 Enhances NF?B Activity to Promote Sarcomagenesis. Cancer Res 78:2705-2720
Hunter, Zachary R; Xu, Lian; Tsakmaklis, Nickolas et al. (2018) Insights into the genomic landscape of MYD88 wild-type Waldenström macroglobulinemia. Blood Adv 2:2937-2946
Szalat, R; Samur, M K; Fulciniti, M et al. (2018) Nucleotide excision repair is a potential therapeutic target in multiple myeloma. Leukemia 32:111-119
Bolli, Niccolò; Maura, Francesco; Minvielle, Stephane et al. (2018) Genomic patterns of progression in smoldering multiple myeloma. Nat Commun 9:3363

Showing the most recent 10 out of 407 publications