While immune checkpoint inhibitors (ICI) have revolutionized the treatment of many cancers, including metastatic clear cell renal cell carcinoma (ccRCC), the development of agents that overcome resistance to anti-PD-1/PD-L1 based therapy represents a critical unmet need for ccRCC patients. We have shown that the B7 family member HERV-H LTR-associating 2 (HHLA2) is expressed in the majority of ccRCC and recently have discovered an inhibitory receptor (KIR3DL3) for HHLA2. Monoclonal antibodies that selectively block the HHLA2/KIRDL3 interaction, which we call the HHLA2 Inhibitory Pathway (HIP), could be an important means to enhance anti-tumor immune responses. In this proposal, we will study the expression of HHLA2 and it receptors in kidney cancer on tumor cells and immune cells and the relationship of HHLA2 and PD-L1 expression on tumors cells. Using clinically annotated specimens from clinical trials of patients with ccRCC on anti-PD-1 therapy, we will determine whether HHLA2 expression is associated with lack of response to PD-1 therapy. We will elucidate the regulatory pathways that are similar and different between HHLA2 and PD-L1 to better understand the expression of these immune checkpoints in kidney cancer and how their expression may change over the course of tumor progression and selection pressures. We will identify the optimal reagents for activating T cells and NK cells through the HHLA2:KIR3DL3 pathway in both in vitro and in vivo models. Our results will direct the selection of humanized blocking antibodies of HHLA2 Inhibitory Pathway that will move into primate toxicity and human Phase I clinical trials during year two of this grant.

Public Health Relevance

In this proposal we show that expression of the B7 family member HERV-H LTR-associating 2 (HHLA2) is present in the majority of ccRCC and may serve to suppress T cell function and promote resistance to PD-1 blockade. We have developed antibodies that selectively block the binding of HHLA2 to a newly discovered inhibitory receptor (KIR3DL3) and enhance anti-tumor responses. Our goal is to identify therapeutic antibodies that block the HHLA2 Inhibitory Pathway and test the optimized agent in human ccRCC clinical trials.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
2P50CA101942-16
Application #
10024143
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2020-09-01
Budget End
2021-08-31
Support Year
16
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Beth Israel Deaconess Medical Center
Department
Type
DUNS #
071723621
City
Boston
State
MA
Country
United States
Zip Code
02215
Liu, Wenjing; Chen, Binbin; Wang, Yang et al. (2018) RGMb protects against acute kidney injury by inhibiting tubular cell necroptosis via an MLKL-dependent mechanism. Proc Natl Acad Sci U S A 115:E1475-E1484
Iorgulescu, J Bryan; Braun, David; Oliveira, Giacomo et al. (2018) Acquired mechanisms of immune escape in cancer following immunotherapy. Genome Med 10:87
Gopal, Raj K; Kübler, Kirsten; Calvo, Sarah E et al. (2018) Widespread Chromosomal Losses and Mitochondrial DNA Alterations as Genetic Drivers in Hürthle Cell Carcinoma. Cancer Cell 34:242-255.e5
Nakashima, Hiroshi; Alayo, Quazim A; Penaloza-MacMaster, Pablo et al. (2018) Modeling tumor immunity of mouse glioblastoma by exhausted CD8+ T cells. Sci Rep 8:208
Signoretti, Sabina; Flaifel, Abdallah; Chen, Ying-Bei et al. (2018) Renal Cell Carcinoma in the Era of Precision Medicine: From Molecular Pathology to Tissue-Based Biomarkers. J Clin Oncol :JCO2018792259
Hamieh, Lana; Choueiri, Toni K; Ogórek, Barbara et al. (2018) Mechanisms of acquired resistance to rapalogs in metastatic renal cell carcinoma. PLoS Genet 14:e1007679
Gao, Xin; McDermott, David F (2018) Ipilimumab in combination with nivolumab for the treatment of renal cell carcinoma. Expert Opin Biol Ther 18:947-957
Gopal, Raj K; Calvo, Sarah E; Shih, Angela R et al. (2018) Early loss of mitochondrial complex I and rewiring of glutathione metabolism in renal oncocytoma. Proc Natl Acad Sci U S A 115:E6283-E6290
Scelo, Ghislaine; Muller, David C; Riboli, Elio et al. (2018) KIM-1 as a Blood-Based Marker for Early Detection of Kidney Cancer: A Prospective Nested Case-Control Study. Clin Cancer Res 24:5594-5601
Zhang, Jinfang; Bu, Xia; Wang, Haizhen et al. (2018) Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature 553:91-95

Showing the most recent 10 out of 153 publications