This SPORE focuses on the treatment of lymphoma using immunotherapeutic approaches. Four of the fiveprojects will initiate clinical trials during the course of the studies. This depends on the availability of aGMPmanufacturing facility for the preparation of the vectors and cellular therapy products. The GMP Facilities atthe Center for Cell and Gene Therapy have been in operation for more than 6 years. The Cell ProcessingFacility has considerable experience in the preparation of a wide variety of cellular products, including all thatwould be prepared for the SPORE projects. It has been designated one of three National Somatic CellTherapy Processing Facilities by the NHLBI under its Production Assistance for Cell Therapy ContractProgram. The Vector Production Facility, which would also be a part of the Core, has produced more than20 clinical grade adenovectors for local, national and international studies and is a National Gene VectorLaboratory for adenoviral vectors. It also has considerable experience in manufacturing clinical graderetroviral vectors. The final components of the Core are the Quality Control Laboratory, which performs in-house testing of cellular products and vectors, and is responsible for routine monitoring of GoodManufacturing Practices; and the Quality Assurance Group that ensures compliance with GMP and providesindependent overview of all aspects of manufacturing and release. The GMP staff also have extensiveregulatory experience that will facilitate the translational of laboratory studies into clinical trials. In summary,the Cell Processing and Vector Production Core is a vital component of the SPORE that will provide servicesthat are essential to the implementation of the clinical studies.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
1P50CA126752-01
Application #
7253735
Study Section
Special Emphasis Panel (ZCA1-RPRB-7 (J1))
Project Start
2007-04-01
Project End
2012-03-31
Budget Start
2007-09-11
Budget End
2008-08-31
Support Year
1
Fiscal Year
2007
Total Cost
$139,279
Indirect Cost
Name
Baylor College of Medicine
Department
Type
DUNS #
051113330
City
Houston
State
TX
Country
United States
Zip Code
77030
Brunetti, Lorenzo; Gundry, Michael C; Kitano, Ayumi et al. (2018) Highly Efficient Gene Disruption of Murine and Human Hematopoietic Progenitor Cells by CRISPR/Cas9. J Vis Exp :
Xiong, Wei; Chen, Yuhui; Kang, Xi et al. (2018) Immunological Synapse Predicts Effectiveness of Chimeric Antigen Receptor Cells. Mol Ther 26:963-975
Heslop, Helen E; Brenner, Malcolm K (2018) Seek and You Will Not Find: Ending the Hunt for Replication-Competent Retroviruses during Human Gene Therapy. Mol Ther 26:1-2
Hogstad, Brandon; Berres, Marie-Luise; Chakraborty, Rikhia et al. (2018) RAF/MEK/extracellular signal-related kinase pathway suppresses dendritic cell migration and traps dendritic cells in Langerhans cell histiocytosis lesions. J Exp Med 215:319-336
Mamonkin, Maksim; Mukherjee, Malini; Srinivasan, Madhuwanti et al. (2018) Reversible Transgene Expression Reduces Fratricide and Permits 4-1BB Costimulation of CAR T Cells Directed to T-cell Malignancies. Cancer Immunol Res 6:47-58
Velasquez, Mireya Paulina; Bonifant, Challice L; Gottschalk, Stephen (2018) Redirecting T cells to hematological malignancies with bispecific antibodies. Blood 131:30-38
Kalra, Mamta; Gerdemann, Ulrike; Luu, Jessica D et al. (2018) Epstein-Barr Virus (EBV)-derived BARF1 encodes CD4- and CD8-restricted epitopes as targets for T-cell immunotherapy. Cytotherapy :
Ngai, Ho; Tian, Gengwen; Courtney, Amy N et al. (2018) IL-21 Selectively Protects CD62L+ NKT Cells and Enhances Their Effector Functions for Adoptive Immunotherapy. J Immunol 201:2141-2153
Morita, Daisuke; Nishio, Nobuhiro; Saito, Shoji et al. (2018) Enhanced Expression of Anti-CD19 Chimeric Antigen Receptor in piggyBac Transposon-Engineered T Cells. Mol Ther Methods Clin Dev 8:131-140
Bollard, Catherine M; Tripic, Tamara; Cruz, Conrad Russell et al. (2018) Tumor-Specific T-Cells Engineered to Overcome Tumor Immune Evasion Induce Clinical Responses in Patients With Relapsed Hodgkin Lymphoma. J Clin Oncol 36:1128-1139

Showing the most recent 10 out of 270 publications