Mutation of the BRAF oncogene is a common event in colorectal cancer (CRC). These mutations are associated with adverse outcome and insensitivity to epidermal growth factor receptor (EGFR) based therapy. Whereas RAF inhibitors have been successful in the treatment of BRAF-mutant malignant melanoma, response rates in BRAF-mutant CRC are surprisingly low. The basis for these disparate treatment outcomes remains incompletely understood. Preliminary studies from our groups found that suppression of the MAPK pathway by PLX4720 is incomplete in CRC lines. In some cases, this may be due to augmented EGFR-dependent signaling, but this does not explain all resistance in this setting. Our objective is to identify mechanisms operant in BRAF-mutant colorectal cancer that confer de novo resistance to RAF inhibitors, in hopes of enabling more efficacious therapeutics. First, differentially expressed genes linked to BRAF-mutant CRC will be identified by analysis of the TCGA dataset;these genes will be integrated with those that modify response to MAPK pathway inhibitors based on ongoing systematic functional screens. Top-ranking genes will be subjected to mechanistic studies to elucidate the molecular basis by which they confer resistance, in parallel, ongoing functional screens will be expanded to identify genes that are synthetic lethal with RAF inhibition in BRAF-mutant colorectal cells. Here, validation of leading candidates will be prioritized for genes that are potentially druggable-several candidates have already been nominated. Rational combinations of targeted agents with RAF inhibitors will be explored in cell culture and in xenograft models. Finally, clinical trials of combined RAF and MEK inhibitors will be performed at DF/HCC in an attempt to improve efficacy by enhancing suppression of the MAPK pathway and possibly prevent the emergence of drug-resistance. Tumor biopsies will be collected pre-treatment, on-treatment and post-progression, and whole exome and transcriptome sequencing will be used to identify genomic alterations that may drive resistance. Altogether, this work should provide a rigorous analysis of resistance to MAPK inhibitors and new therapeutic approaches to overcome them.

Public Health Relevance

The survival colorectal cancer patients whose tumors harbor BRAF mutations is dramatically worse than those with wildtype BRAF;the benefit of certain chemotherapy drugs is similarly poor. Therefore, It Is essential that novel therapeutic approaches are developed to address this unmet medical need. We will utilize state of the art technologies and experimental approaches together with a rational clinical trial to forge a new treatment framework for this lethal subtype of colorectal cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
2P50CA127003-06A1
Application #
8485719
Study Section
Special Emphasis Panel (ZCA1-RPRB-M (J1))
Project Start
2007-04-01
Project End
2018-06-30
Budget Start
2013-09-23
Budget End
2014-06-30
Support Year
6
Fiscal Year
2013
Total Cost
$237,507
Indirect Cost
$71,702
Name
Dana-Farber Cancer Institute
Department
Type
DUNS #
076580745
City
Boston
State
MA
Country
United States
Zip Code
02215
Aguirre, Andrew J (2018) Refining Classification of Pancreatic Cancer Subtypes to Improve Clinical Care. Gastroenterology 155:1689-1691
Kosumi, Keisuke; Hamada, Tsuyoshi; Koh, Hideo et al. (2018) The Amount of Bifidobacterium Genus in Colorectal Carcinoma Tissue in Relation to Tumor Characteristics and Clinical Outcome. Am J Pathol 188:2839-2852
Wang, Xiaoliang; Chan, Andrew T; Slattery, Martha L et al. (2018) Influence of Smoking, Body Mass Index, and Other Factors on the Preventive Effect of Nonsteroidal Anti-Inflammatory Drugs on Colorectal Cancer Risk. Cancer Res 78:4790-4799
Wong, Gabrielle S; Zhou, Jin; Liu, Jie Bin et al. (2018) Targeting wild-type KRAS-amplified gastroesophageal cancer through combined MEK and SHP2 inhibition. Nat Med 24:968-977
Aguirre, Andrew J; Hahn, William C (2018) Synthetic Lethal Vulnerabilities in KRAS-Mutant Cancers. Cold Spring Harb Perspect Med 8:
Liu, Li; Tabung, Fred K; Zhang, Xuehong et al. (2018) Diets That Promote Colon Inflammation Associate With Risk of Colorectal Carcinomas That Contain Fusobacterium nucleatum. Clin Gastroenterol Hepatol 16:1622-1631.e3
Yang, Wanshui; Liu, Li; Masugi, Yohei et al. (2018) Calcium intake and risk of colorectal cancer according to expression status of calcium-sensing receptor (CASR). Gut 67:1475-1483
Stachler, Matthew D; Camarda, Nicholas D; Deitrick, Christopher et al. (2018) Detection of Mutations in Barrett's Esophagus Before Progression to High-Grade Dysplasia or Adenocarcinoma. Gastroenterology 155:156-167
Fadelu, Temidayo; Zhang, Sui; Niedzwiecki, Donna et al. (2018) Nut Consumption and Survival in Patients With Stage III Colon Cancer: Results From CALGB 89803 (Alliance). J Clin Oncol 36:1112-1120
Doupé, David P; Marshall, Owen J; Dayton, Hannah et al. (2018) Drosophila intestinal stem and progenitor cells are major sources and regulators of homeostatic niche signals. Proc Natl Acad Sci U S A 115:12218-12223

Showing the most recent 10 out of 590 publications