This proposal seeks effective combination therapies that maximize GIST response to KIT/PDGFRA inhibition by concurrently targeting the biologically key MEK/MAPK pathway. Most GISTs express mutant, constitutively activated forms of the KIT or PDGFRA, and we have shown that these formerly untreatable cancers can be palliated in 80% of patients by oral single-agent therapy with imatinib mesylate. However, patients responding to imatinib have persistent measurable disease and generally develop resistance within two years of starting treatment. Therefore, more effective and broader-spectrum therapies are urgently needed. Notably, our preliminary studies show that KIT/PDGFRA imatinib resistance mechanisms vary from patient to patient, and also between metastatic lesions in a given patient, but uniformly rely upon MEK/MAPK signaling to support cell proliferation.
In Aim 1, by studying MEK/MAPK signaling and response mechanisms, we will develop clinically-relevant biomarkers and - most importantly - we will identify alternate MEK-dependent therapeutic targets which might have greater specificity, in GIST, compared to MEK.
In Aim 2, we will characterize mechanisms of MEKi resistance, since such studies are likely to identify biologically essential regulatory nodes in MEK/MAPK-pathways, which - like those found in Aim 1 - will be candidates as biomakers and therapeutic targets in GIST clinical trials. The collective studies in Aims 1-2, by revealing the scope of MEK/MAPK signaling in GIST, will provide the understanding needed to design more effective and less toxic clinical trials.
In Aim 3 we evaluate combination therapies with imatinib and MEKi, as a strategy to inhibit downstream signals from the varied gain-of-function KIT mutations each imatinib-resistant patient, while maintaining imatinib inhibition of nonprogressing GIST subclones. This will be accomplished through a phase l/II clinical trial of the MEK inhibitor, MEKI62, combined with imatinib, in patients showing progression of metastatic GIST on imatinib or sunitinib. Through these studies, we will translate the basic science proposed in this SPORE through to clinical application.

Public Health Relevance

We expect this GIST research will enable clinical progress by developing therapies that are not stymied by the diversity of KIT/PDGFRA inhibitor resistance mechanisms. The proposed studies seek to maximize response by targeting KIT/PDGFRA oncogenic signals as they pass through the MEK/MAPK conduit, and such strategies are also relevant in other kinase-driven human cancers

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
2P50CA127003-06A1
Application #
8485721
Study Section
Special Emphasis Panel (ZCA1-RPRB-M (J1))
Project Start
2007-04-01
Project End
2018-06-30
Budget Start
2013-09-23
Budget End
2014-06-30
Support Year
6
Fiscal Year
2013
Total Cost
$192,846
Indirect Cost
$27,639
Name
Dana-Farber Cancer Institute
Department
Type
DUNS #
076580745
City
Boston
State
MA
Country
United States
Zip Code
02215
Babic, A; Schnure, N; Neupane, N P et al. (2018) Plasma inflammatory cytokines and survival of pancreatic cancer patients. Clin Transl Gastroenterol 9:145
Lopes-Ramos, Camila M; Kuijjer, Marieke L; Ogino, Shuji et al. (2018) Gene Regulatory Network Analysis Identifies Sex-Linked Differences in Colon Cancer Drug Metabolism. Cancer Res 78:5538-5547
Van Blarigan, Erin L; Ou, Fang-Shu; Niedzwiecki, Donna et al. (2018) Dietary Fat Intake after Colon Cancer Diagnosis in Relation to Cancer Recurrence and Survival: CALGB 89803 (Alliance). Cancer Epidemiol Biomarkers Prev 27:1227-1230
Patra, Krushna C; Kato, Yasutaka; Mizukami, Yusuke et al. (2018) Mutant GNAS drives pancreatic tumourigenesis by inducing PKA-mediated SIK suppression and reprogramming lipid metabolism. Nat Cell Biol 20:811-822
Katona, Bryson W; Yurgelun, Matthew B; Garber, Judy E et al. (2018) A counseling framework for moderate-penetrance colorectal cancer susceptibility genes. Genet Med 20:1324-1327
Jeon, Jihyoun; Du, Mengmeng; Schoen, Robert E et al. (2018) Determining Risk of Colorectal Cancer and Starting Age of Screening Based on Lifestyle, Environmental, and Genetic Factors. Gastroenterology 154:2152-2164.e19
Kosumi, Keisuke; Hamada, Tsuyoshi; Koh, Hideo et al. (2018) The Amount of Bifidobacterium Genus in Colorectal Carcinoma Tissue in Relation to Tumor Characteristics and Clinical Outcome. Am J Pathol 188:2839-2852
Aguirre, Andrew J (2018) Refining Classification of Pancreatic Cancer Subtypes to Improve Clinical Care. Gastroenterology 155:1689-1691
Wong, Gabrielle S; Zhou, Jin; Liu, Jie Bin et al. (2018) Targeting wild-type KRAS-amplified gastroesophageal cancer through combined MEK and SHP2 inhibition. Nat Med 24:968-977
Wang, Xiaoliang; Chan, Andrew T; Slattery, Martha L et al. (2018) Influence of Smoking, Body Mass Index, and Other Factors on the Preventive Effect of Nonsteroidal Anti-Inflammatory Drugs on Colorectal Cancer Risk. Cancer Res 78:4790-4799

Showing the most recent 10 out of 590 publications