Poor prognosis in pancreatic cancer is due in part to poor response to the current standard of care (gemcitabine, a cytidine nucloeside analog). Our preliminary data establish a novel, widely-prevalent mechanism of resistance to fluoropyrimidines whereby the Hypoxia-Inducible Factor1 (HIF1) alpha-induced glycolytic flux leads to a corresponding increase in the pyrimidine biosynthetic pathway to enhance the intrinsic levels of cytidine. Such increased levels of cytidine/dCTP diminish the effective levels of gemcitabine and 5FU (in FOLFIRINOX) through molecular competition or dilution. Our data also indicate existance of a bidirectional tumor-stromal metabolite flux that may facilitate tumor/stromal cell survival under low nutrient conditions, promote desmoplasia, increase metabolite flux into pyrimidine biosynthetic pathway, and result in decreased chemotherapy sensitivity. Thus, we propose to determine if combining gemcitabine/FOLFIRINOX therapies with digoxin (to target HIF1 alpha) or Leflunomide (to target pyrimidine biosynthesis) will diminish fluoropyrimidine therapy resistance in pancreatic cancer patients (AIM 1). Additionally, we will employ 18FFDG- PET imaging in pancreatic cancer patients to predict the resistance status of the tumor against pyrimidine analogs (AIM1). We will also investigate if cytidine levels in pancreatic tumors/biofluids may serve as potential biomarkers for chemotherapy responsiveness in pancreatic cancer patients (AIM2). Furthermore, we will investigate if tumor-stromal metabolite exchange facilitates stromal cell survival and desmoplasia in tumor models, and increased pyrimidine biosynthesis and diminished gemcitabine responsiveness in tumor cells (AIM3). We predict that our proposed improvement to current chemotherapy strategies will improve survival in pancreatic cancer patients by increasing the efficacy and/or decreasing the toxicity, by requiring smaller doses, of chemotherapy strategies that employ gemcitabine and/or 5FU.
Here, we will investigate if targeting a novel metabolic pathway of chemoresistance will be efficacious in improving responsiveness to fluoropyrimidine-based therapies in pancreatic tumors. We will investigate imaging/biomarker approaches for predicting response and determine if novel combinations of approved chemotherapy agents with gemcitabine or FOLFIRINOX will improve survival in pancreatic cancer.
Qi, Bowen; Crawford, Ayrianne J; Wojtynek, Nicholas E et al. (2018) Indocyanine green loaded hyaluronan-derived nanoparticles for fluorescence-enhanced surgical imaging of pancreatic cancer. Nanomedicine 14:769-780 |
Goodwin, Justin; Choi, Hyunsung; Hsieh, Meng-Hsiung et al. (2018) Targeting Hypoxia-Inducible Factor-1?/Pyruvate Dehydrogenase Kinase 1 Axis by Dichloroacetate Suppresses Bleomycin-induced Pulmonary Fibrosis. Am J Respir Cell Mol Biol 58:216-231 |
Coelho, SÃlvia Castro; Reis, Daniel Pires; Pereira, Maria Carmo et al. (2018) Gold Nanoparticles for Targeting Varlitinib to Human Pancreatic Cancer Cells. Pharmaceutics 10: |
Krishn, Shiv Ram; Ganguly, Koelina; Kaur, Sukhwinder et al. (2018) Ramifications of secreted mucin MUC5AC in malignant journey: a holistic view. Carcinogenesis 39:633-651 |
Cannon, Andrew; Thompson, Christopher; Hall, Bradley R et al. (2018) Desmoplasia in pancreatic ductal adenocarcinoma: insight into pathological function and therapeutic potential. Genes Cancer 9:78-86 |
Nimmakayala, Rama Krishna; Seshacharyulu, Parthasarathy; Lakshmanan, Imayavaramban et al. (2018) Cigarette Smoke Induces Stem Cell Features of Pancreatic Cancer Cells via PAF1. Gastroenterology 155:892-908.e6 |
Robb, Caroline M; Kour, Smit; Contreras, Jacob I et al. (2018) Characterization of CDK(5) inhibitor, 20-223 (aka CP668863) for colorectal cancer therapy. Oncotarget 9:5216-5232 |
Attri, Kuldeep S; Mehla, Kamiya; Shukla, Surendra K et al. (2018) Microscale Gene Expression Analysis of Tumor-Associated Macrophages. Sci Rep 8:2408 |
Nimmakayala, Rama Krishna; Batra, Surinder K; Ponnusamy, Moorthy P (2018) Unraveling the journey of cancer stem cells from origin to metastasis. Biochim Biophys Acta Rev Cancer 1871:50-63 |
Aithal, Abhijit; Rauth, Sanchita; Kshirsagar, Prakash et al. (2018) MUC16 as a novel target for cancer therapy. Expert Opin Ther Targets 22:675-686 |
Showing the most recent 10 out of 191 publications