Project 2: The triterpenoids are novel electrophilic compounds that we have shown induce apoptotic cell death in mantle cell lymphoma (MCL) and diffuse large cell lymphoma (DLCL). Indeed our published and preliminary studies suggest that these compounds manifest their cytotoxic effects by both increasing the generation of reactive oxygen species (ROS), and decreasing the activity of such critical anti-oxidant defense mechanisms as thioredoxin (Trx) and the mitochondria! proteases, Lon and CIpXP. This suggests a novel therapeutic strategy for lymphoma based on modulating the lymphoma cell redox state. In addition, our proposed mechanism suggests that other redox active agents, such as proteosome inhibitors and histone deacetylase inhibitors, are rationale agents to combine with the triterpenoids.
The Specific Aims of this proposal have been developed to provide the essential pre-clinical data needed to support the clinical evaluation of the optimal triterpenoid and other redox active agent combinations for patients with DLCL and MCL. Specifically, in Specific Aim 1, we will validate our proposed mechanism of activity of the triterpenoids so to optimize triterpenoid drug combinations in vitro. These combinations will be further optimized and the biological targets of ROS generation, Trx and mitochondrial proteases validated in vivo using DLCL and MCL/SCID xenograft models in Specific Aim 2. We anticipate that the data derived from these Specific Aims will suggest an optimal triterpenoid combination, and sequence of drug delivery to be studied in the context of a phase l/ll trial as proposed in Specific Aim 3. A critical component of this trial will be the correlative laboratory studies whereby we propose to determine the in vivo effects of this drug combination on ROS, Trx and mitochondrial protease activity in patients with lymphoma. It is further anticipated that the lessons learned from these studies will support our long term goals which are to understand the clinical potential of the family of electrophilic compounds in NHL, which also includes the parthenolides, cucurmin, and the acivicins, and more importantly how best to exploit the redox state of lymphoma to generate new and effective approaches for the treatment of patients with NHL.
Showing the most recent 10 out of 115 publications