The long range goal of our studies is to generate durable CD8+ T cell responses against epithelial ovarian cancer (EOC) for extending remission rates. We have demonstrated a role for the immunoregulatory enzyme, indoleamine 2,3 dioxygenase (IDO) in restricting effector CD8+ expansion and augmenting expansion of CD4+CD25+FOXP3+Treg cells in human and murine ovarian cancer. In turn, we have shown that Treg cells suppress polyfunctional high avidity effector T cells derived from vaccinated patients. Consequently, we hypothesize that blockade of IDO activity by a novel IDO inhibitor, INCB024360 will (i) abrogate differentiation of CD4+ T cells into Treg cells, (ii) reverse IDO mediated arrest of T cell proliferation, (iii) unmask vaccine induced high avidity polyfunctional effector CD8+ T cells and thereby potentiate vaccine efficacy against EOC in a clinical trial. To test our hypotheses, we propose: SA1 To test whether the combinatorial regimen of IDO inhibition and rCNP-NY-ESO-1/TRICOM immunization is safe, and produces clinical efficacy in a phase I/IIb trial;SA2: To test whether INCB024360 mediated IDO blockade favors generation of high avidity polyfunctional effector CD8+ T cells;SA3: To determine the impact of IDO blockade on vaccine induced CD4+ T cell response for high avidity CD8+ Effector/Memory generation. The experimental plan is designed to test whether vaccine efficacy will be enhanced by blocking IDO mediated immune tolerance in a clinical trial. Mechanistically, because our phase II study design is randomized with a 2X2 factorial design, we will be able to delineate the impact of IDO blockade on promoting vaccine induced T cell clonal expansion and effector/memory differentiation, and whether this is mediated by relieving inhibition of high avidity polyfunctional antigen specific T cells by Tregs. The successful completion of our proposed studies will result in the generation of critical data that will facilitate Phase III evaluation of IDO blockade to relieve Treg mediated immune tolerance, promote conditions that favor durable host immunity and prolong disease free survival in ovarian cancer patients.

Public Health Relevance

The goal of this project is to optimize and test a multi-modal approach consisting of vaccine therapy and blockade of IDO enzyme activity, which promotes accumulation regulatory T cells (Tregs) in ovarian cancer. This approach would greatly enhance the anti-tumor efficacy of the vaccination and potentially prolong the duration of remission in ovarian cancer patients who are in second remission.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA159981-02
Application #
8754344
Study Section
Special Emphasis Panel (ZCA1-RPRB-M)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
2
Fiscal Year
2014
Total Cost
$656,160
Indirect Cost
$216,167
Name
Roswell Park Cancer Institute Corp
Department
Type
DUNS #
824771034
City
Buffalo
State
NY
Country
United States
Zip Code
14263
Wang, Yue; Wang, Zehua; Xu, Jieni et al. (2018) Systematic identification of non-coding pharmacogenomic landscape in cancer. Nat Commun 9:3192
Minlikeeva, Albina N; Moysich, Kirsten B; Mayor, Paul C et al. (2018) Anthropometric characteristics and ovarian cancer risk and survival. Cancer Causes Control 29:201-212
Peres, Lauren C; Risch, Harvey; Terry, Kathryn L et al. (2018) Racial/ethnic differences in the epidemiology of ovarian cancer: a pooled analysis of 12 case-control studies. Int J Epidemiol 47:460-472
Szender, J Brian; Kaur, Jasmine; Clayback, Katherine et al. (2018) Breadth of Genetic Testing Selected by Patients at Risk of Hereditary Breast and Ovarian Cancer. Int J Gynecol Cancer 28:26-33
Tsuji, Takemasa; Yoneda, Akira; Matsuzaki, Junko et al. (2018) Rapid Construction of Antitumor T-cell Receptor Vectors from Frozen Tumors for Engineered T-cell Therapy. Cancer Immunol Res 6:594-604
Shenoy, Gautam N; Loyall, Jenni; Maguire, Orla et al. (2018) Exosomes Associated with Human Ovarian Tumors Harbor a Reversible Checkpoint of T-cell Responses. Cancer Immunol Res 6:236-247
Soh, Kah Teong; Wallace, Paul K (2018) RNA Flow Cytometry Using the Branched DNA Technique. Methods Mol Biol 1678:49-77
Liu, Gang; Mukherjee, Bhramar; Lee, Seunggeun et al. (2018) Robust Tests for Additive Gene-Environment Interaction in Case-Control Studies Using Gene-Environment Independence. Am J Epidemiol 187:366-377
Ong, Jue-Sheng; Hwang, Liang-Dar; Cuellar-Partida, Gabriel et al. (2018) Assessment of moderate coffee consumption and risk of epithelial ovarian cancer: a Mendelian randomization study. Int J Epidemiol 47:450-459
Yang, Xi; Xia, Rui; Yue, Cuihua et al. (2018) ATF4 Regulates CD4+ T Cell Immune Responses through Metabolic Reprogramming. Cell Rep 23:1754-1766

Showing the most recent 10 out of 128 publications