The primary objective of the Glioma SPORE Career Enhancement Program (CEP) is to attract talented new investigators to translational glioma research. Potential CEP awardees include junior faculty beginning their careers or established faculty members in other fields who wish to redirect their interests and efforts to glioma research. We will maintain a comprehensive, system-wide process for solicitation of CEP applications and an expert-based review process to select the most meritorious applicants. The CEP program faculty consists of a multidisciplinary cohort of experienced, senior mentors for CEP awardees. The CEP provides limited-duration funding for promising, junior translational investigators who are focused on glioma research. The program will provide support, mentoring and monitoring for CEP awardees. We will maintain a monitoring process to measure progress and outcomes of CEP awardees and the CEP program. We carefully monitor the progress of CEP awardees through clearly enumerated metrics on a biannual basis. The overall Career Enhancement Program is assessed on an annual basis by the internal and external advisory boards. The CEP leverages institutional resources to support and enhance the success of the program.

Public Health Relevance

The Career Enhancement Program provides research support for junior or new investigators in the field of glioma research. Through support, mentoring and monitoring the program enables awardees to embark on successful careers in glioma research that will ultimately benefit patients.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA165962-07
Application #
10019496
Study Section
Special Emphasis Panel (ZCA1)
Project Start
2013-09-19
Project End
2024-08-31
Budget Start
2020-09-01
Budget End
2021-08-31
Support Year
7
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Brigham and Women's Hospital
Department
Type
DUNS #
030811269
City
Boston
State
MA
Country
United States
Zip Code
02115
Zhao, Yingchao; Liu, Pinan; Zhang, Na et al. (2018) Targeting the cMET pathway augments radiation response without adverse effect on hearing in NF2 schwannoma models. Proc Natl Acad Sci U S A 115:E2077-E2084
Bian, X; Gao, J; Luo, F et al. (2018) PTEN deficiency sensitizes endometrioid endometrial cancer to compound PARP-PI3K inhibition but not PARP inhibition as monotherapy. Oncogene 37:341-351
McBrayer, Samuel K; Mayers, Jared R; DiNatale, Gabriel J et al. (2018) Transaminase Inhibition by 2-Hydroxyglutarate Impairs Glutamate Biosynthesis and Redox Homeostasis in Glioma. Cell 175:101-116.e25
McKenney, Anna Sophia; Lau, Allison N; Somasundara, Amritha Varshini Hanasoge et al. (2018) JAK2/IDH-mutant-driven myeloproliferative neoplasm is sensitive to combined targeted inhibition. J Clin Invest 128:789-804
Shankar, Ganesh M; Kirtane, Ameya R; Miller, Julie J et al. (2018) Genotype-targeted local therapy of glioma. Proc Natl Acad Sci U S A 115:E8388-E8394
Arvanitis, Costas D; Askoxylakis, Vasileios; Guo, Yutong et al. (2018) Mechanisms of enhanced drug delivery in brain metastases with focused ultrasound-induced blood-tumor barrier disruption. Proc Natl Acad Sci U S A 115:E8717-E8726
Li, Ben B; Qian, Changli; Roberts, Thomas M et al. (2018) Targeted Profiling of RNA Translation. Curr Protoc Mol Biol :e71
Nowosielski, Martha; Wen, Patrick Y (2018) Imaging Criteria in Neuro-oncology. Semin Neurol 38:24-31
Li, Ben B; Qian, Changli; Gameiro, Paulo A et al. (2018) Targeted profiling of RNA translation reveals mTOR-4EBP1/2-independent translation regulation of mRNAs encoding ribosomal proteins. Proc Natl Acad Sci U S A 115:E9325-E9332
Khandekar, Melin J; Jain, Rakesh (2018) Smooth sailing for immunotherapy for unresectable stage III non-small cell lung cancer: the PACIFIC study. Transl Cancer Res 7:S16-S20

Showing the most recent 10 out of 84 publications