The Biospecimen, Pathology and Genomics Core for the Yale Lung Cancer SPORE will serve as the nexus for all human biospecimen acquisition, processing and analysis for all SPORE-sponsored research as well as provide support for all non-human model system specimen molecular analytics not currently offered through Yale shared facilities. Tissue biopsy procurement will be coordinated with all interventionalists and surgeons as this occurs at the bedside or in the operating room with research tissues derived from extra passes of the biopsy needle after the diagnostic specimen has been collected or collection at the surgical pathology bench. The Biospecimen, Pathology and Genomics Core will work closely with Yale Pathology Tissue Services, the research tissue procurement service supported within the Department of Pathology (also directed by David Rimm) to obtain fresh resection specimens. Specifically the Biospecimen, Pathology and Genomics Core will: 1) coordinate the acquisition, processing, aliquoting, storage and distribution for all whole blood samples and their derivatives (e.g., plasma, serum, buffy coat) required for the described research in Projects 1-4 as well as the Developmental and Career Development Award Programs? approved projects; 2) coordinate the acquisition, handling, storage and distribution for all lung cancer tissue sample collection required for Projects 1-4, Developmental and Career Development Awards; 3) generate conditionally reprogrammed primary lung cancer cell lines from fresh tissue samples for use in Projects 1-3; and 4) conduct molecular pathology experiments including partial support of whole exome sequencing, RNA-Seq and Copy Number Variation analysis (Projects 2 and 3); quantitative microRNA in situ hybridization (Projects 1 and 2) and other molecular pathology support as needed during the term of the SPORE.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA196530-03
Application #
9325319
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2017-08-01
Budget End
2018-07-31
Support Year
3
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Yale University
Department
Type
DUNS #
043207562
City
New Haven
State
CT
Country
United States
Zip Code
06520
Zhang, Jinhua; Song, Kun; Wang, Jun et al. (2018) S100A4 blockage alleviates agonistic anti-CD137 antibody-induced liver pathology without disruption of antitumor immunity. Oncoimmunology 7:e1296996
Anastasiadou, Eleni; Faggioni, Alberto; Trivedi, Pankaj et al. (2018) The Nefarious Nexus of Noncoding RNAs in Cancer. Int J Mol Sci 19:
Toki, Maria I; Mani, Nikita; Smithy, James W et al. (2018) Immune Marker Profiling and Programmed Death Ligand 1 Expression Across NSCLC Mutations. J Thorac Oncol 13:1884-1896
Park, Seyoung; Zhao, Hongyu (2018) Spectral clustering based on learning similarity matrix. Bioinformatics 34:2069-2076
Gettinger, S N; Choi, J; Mani, N et al. (2018) A dormant TIL phenotype defines non-small cell lung carcinomas sensitive to immune checkpoint blockers. Nat Commun 9:3196
Adams, Brian D; Arem, Hannah; Hubal, Monica J et al. (2018) Exercise and weight loss interventions and miRNA expression in women with breast cancer. Breast Cancer Res Treat 170:55-67
Burslem, George M; Smith, Blake E; Lai, Ashton C et al. (2018) The Advantages of Targeted Protein Degradation Over Inhibition: An RTK Case Study. Cell Chem Biol 25:67-77.e3
Liu, Huafeng; Li, Xin; Hu, Li et al. (2018) A crucial role of the PD-1H coinhibitory receptor in suppressing experimental asthma. Cell Mol Immunol 15:838-845
Choe, Junho; Lin, Shuibin; Zhang, Wencai et al. (2018) mRNA circularization by METTL3-eIF3h enhances translation and promotes oncogenesis. Nature 561:556-560
Bade, Brett C; Hyer, J Madison; Bevill, Benjamin T et al. (2018) A Patient-Centered Activity Regimen Improves Participation in Physical Activity Interventions in Advanced-Stage Lung Cancer. Integr Cancer Ther 17:921-927

Showing the most recent 10 out of 74 publications