The objectives of the UCLA SPORE in Brain Cancer are to contribute significantly to progress in the diagnosis, prognosis, and treatment of brain cancer. These goals will be accomplished through multiple and diverse research projects involving mechanistic pre-clinical work and innovative clinical studies, with a particular focus on developing novel strategies to overcome the problem of treatment resistance. The broad, long-term objectives and aims of our brain cancer SPORE are as follows: 1) to investigate mechanisms of immune evasion following active immunotherapy, and develop rational combinations of immunotherapeutic strategies to overcome the immunosuppressive milieu of the brain tumor microenvironment; 2) to elucidate the alterations in metabolism associated with targeted therapy resistance, and exploit these metabolic vulnerabilities to induce intrinsic apoptosis of tumor cells; 3) to explore the concept of radiation-induced phenotype conversion of non-tumorigenic cells to glioblastoma-initiating cells as a mechanism for radiation resistance, and test new therapeutics to block such glioma stem cell conversion; and 4) to investigate the pathways of resistance to IDH inhibitors, and utilize novel epigenetic pathways to sensitize IDH-mutant gliomas to treatment. In order to achieve these translational research goals of our program, we propose four main projects involving: 1) active immunotherapy combined with immune checkpoint modulation for glioblastoma; 2) targeting metabolic vulnerabilities in glioblastoma cells; 3) inhibition of radiation-induced phenotype conversion to glioma-initiating stem cells; and 4) novel epigenetic treatment of IDH mutant gliomas. These translational research projects will be supported by shared resource cores in administration, biospecimen/pathology, neuroimaging, and biostatistics/bioinformatics/data management. Our program will also be responsive to SPORE themes by incorporating Developmental Research and Career Enhancement Programs in order to foster new approaches for assessing and treating brain cancer. Our diverse array of novel projects and state-of-the-art cores will likely make a significant impact on brain cancer patient care. Each project has been developed jointly by teams of basic and clinical researchers working together in a trans-disciplinary manner to address the most vexing problem in brain cancer ? the development of treatment resistance. All four projects are highly translational and will reach human endpoints within the context of this SPORE grant period.

Public Health Relevance

Overall: UCLA SPORE in Brain Cancer NARRATIVE The UCLA Brain Cancer SPORE will support research into new and innovative strategies to diagnose and treat brain cancer, particularly focusing on novel ways to overcome the problem of treatment resistance. Despite many different treatment approaches, the five-year survival rate for glioblastoma (WHO grade IV glioma) patients is still <5%, and there are no definitive cures for this disease. Thus, the proposed research is of relevance to public health, as there is clearly an unmet need for patients with this type of cancer and novel therapeutic approaches are warranted.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA211015-04
Application #
9982853
Study Section
Special Emphasis Panel (ZCA1)
Program Officer
Hubbard, Leah
Project Start
2017-08-11
Project End
2022-07-31
Budget Start
2020-08-01
Budget End
2021-07-31
Support Year
4
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of California Los Angeles
Department
Neurosurgery
Type
Schools of Medicine
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Kong, Xiao-Tang; Nguyen, Nhung T; Choi, Yoon J et al. (2018) Phase 2 Study of Bortezomib Combined With Temozolomide and Regional Radiation Therapy for Upfront Treatment of Patients With Newly Diagnosed Glioblastoma Multiforme: Safety and Efficacy Assessment. Int J Radiat Oncol Biol Phys 100:1195-1203
Olar, Adriana; Goodman, Lindsey D; Wani, Khalida M et al. (2018) A gene expression signature predicts recurrence-free survival in meningioma. Oncotarget 9:16087-16098
Lillehei, Kevin O; Kalkanis, Steven N; Liau, Linda M et al. (2018) Rationale and design of the 500-patient, 3-year, and prospective Vigilant ObservatIon of GlIadeL WAfer ImplaNT registry. CNS Oncol 7:CNS08
Calais, Jeremie; Fendler, Wolfgang P; Eiber, Matthias et al. (2018) Impact of 68Ga-PSMA-11 PET/CT on the Management of Prostate Cancer Patients with Biochemical Recurrence. J Nucl Med 59:434-441
Ohashi, Minori; Korsakova, Elena; Allen, Denise et al. (2018) Loss of MECP2 Leads to Activation of P53 and Neuronal Senescence. Stem Cell Reports 10:1453-1463
Goode, Benjamin; Mondal, Gourish; Hyun, Michael et al. (2018) A recurrent kinase domain mutation in PRKCA defines chordoid glioma of the third ventricle. Nat Commun 9:810
Patel, Chirag B; Fazzari, Elisa; Chakhoyan, Ararat et al. (2018) 18F-FDOPA PET and MRI characteristics correlate with degree of malignancy and predict survival in treatment-naïve gliomas: a cross-sectional study. J Neurooncol 139:399-409
Davidson, Tom B; Lee, Alexander H; Hsu, Melody et al. (2018) Expression of PD-1 by T cells in malignant glioma patients reflects exhaustion and activation. Clin Cancer Res :
Harris, Robert J; Yao, Jingwen; Chakhoyan, Ararat et al. (2018) Simultaneous pH-sensitive and oxygen-sensitive MRI of human gliomas at 3 T using multi-echo amine proton chemical exchange saturation transfer spin-and-gradient echo echo-planar imaging (CEST-SAGE-EPI). Magn Reson Med 80:1962-1978
Zheng, Feibi; Zhou, Hui; Li, Ning et al. (2018) Skeletal effects of failed parathyroidectomy. Surgery 163:17-21

Showing the most recent 10 out of 91 publications