The Molecular, Cellular and Genetic Core (MCGC) facility will provide four categories of services to investigators in this Center Program. Four specific service areas are: 1) Establish a facility for the provision of oligonucleotides for numerous aspects of molecularly-oriented research, 2) Establish 'banks' of reagents commonly used in molecular and cellular biology to prevent technical redundancy and material waster, including expression vectors, libraries, bacterial strains and cell lines, 3) Provide expertise in the areas of molecular and cellular biology to investigators participating in this center and foster interaction among investigators, including the service for sequencing, expression of recombinant proteins in bacteria or years, and 4) Establish a bank of mutant mouse models created by transgenic and gene targeting techniques, for studying pharmacological questions. The main purpose of this core is to provide the investigators with reliable and cost-effective reagents and technical services as well as to foster scientific communications among investigators. Most uniquely, this core will provide valuable mutant animal models that were generated in several investigators' laboratories within this Center, to researchers who are also interested in using these animal models for their research.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Specialized Center (P50)
Project #
5P50DA011806-05
Application #
6606513
Study Section
Project Start
2002-07-01
Project End
2003-06-30
Budget Start
Budget End
Support Year
5
Fiscal Year
2002
Total Cost
Indirect Cost
Name
University of Minnesota Twin Cities
Department
Type
DUNS #
168559177
City
Minneapolis
State
MN
Country
United States
Zip Code
55455
Hwang, Cheol Kyu; Wagley, Yadav; Law, Ping-Yee et al. (2017) Phosphorylation of poly(rC) binding protein 1 (PCBP1) contributes to stabilization of mu opioid receptor (MOR) mRNA via interaction with AU-rich element RNA-binding protein 1 (AUF1) and poly A binding protein (PABP). Gene 598:113-130
Kibaly, Cherkaouia; Lin, Hong-Yiou; Loh, Horace H et al. (2017) Spinal or supraspinal phosphorylation deficiency at the MOR C-terminus does not affect morphine tolerance in vivo. Pharmacol Res 119:153-168
Kibaly, Cherkaouia; Kam, Angel Y F; Loh, Horace H et al. (2016) Naltrexone Facilitates Learning and Delays Extinction by Increasing AMPA Receptor Phosphorylation and Membrane Insertion. Biol Psychiatry 79:906-16
Meng, Jingjing; Roy, Sabita (2016) Study of Epithelium Barrier Functions by Real-time TER Measurement. Bio Protoc 6:
Banerjee, S; Sindberg, G; Wang, F et al. (2016) Opioid-induced gut microbial disruption and bile dysregulation leads to gut barrier compromise and sustained systemic inflammation. Mucosal Immunol 9:1418-1428
Banerjee, Santanu; Ninkovic, Jana; Meng, Jingjing et al. (2015) Morphine compromises bronchial epithelial TLR2/IL17R signaling crosstalk, necessary for lung IL17 homeostasis. Sci Rep 5:11384
Wang, Yan; Wang, Yan-Xia; Liu, Ting et al. (2015) ?-Opioid receptor attenuates A? oligomers-induced neurotoxicity through mTOR signaling. CNS Neurosci Ther 21:8-14
Meng, Jingjing; Banerjee, Santanu; Li, Dan et al. (2015) Opioid Exacerbation of Gram-positive sepsis, induced by Gut Microbial Modulation, is Rescued by IL-17A Neutralization. Sci Rep 5:10918
Kotecki, Lydia; Hearing, Matthew; McCall, Nora M et al. (2015) GIRK Channels Modulate Opioid-Induced Motor Activity in a Cell Type- and Subunit-Dependent Manner. J Neurosci 35:7131-42
Hwang, Cheol Kyu; Wagley, Yadav; Law, Ping-Yee et al. (2015) Analysis of epigenetic mechanisms regulating opioid receptor gene transcription. Methods Mol Biol 1230:39-51

Showing the most recent 10 out of 308 publications