The Molecular and Morphology Core is designed to achieve two goals: 1) to provide center investigators, their collaborators and the greater scientific community access to high quality cDNA libraries that reflect the complexity and heterogeneity of the renal parenchyma; and 2) to provide cost efficient access to morphological tools and services for the localization of specific transcripts and/or their products in renal cells and tissues. The Molecular Core will obtain high quality RNA from appropriate sources tot construct cDNA for the purpose of preparing yeast two hybrid or full-length cDNA mammalian expression libraries. These libraries are not commercially available or lack sufficient complexity to be suitable for the study of proteins highly restricted during development or along the nephron. The Morphology Core will provide access to reagents and expertise to examine the expression of genes at the transcription or protein level using immunohistochemistry, immunoelectron or confocal microscopy. Successful attainment of these goals will enhance productivity by Renal Center participants, recruit new investigators to the study of renal development and pathophysiology, and make available to the scientific community new tools for the study of gene expression and molecular association in the nephron The Core has an integrated administrative and budgetary structure to efficiently utilize resources and maintain control of reagent/service utilization.

Project Start
2000-08-01
Project End
2001-07-31
Budget Start
Budget End
Support Year
13
Fiscal Year
2001
Total Cost
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Type
DUNS #
791277940
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Hato, Takashi; Winfree, Seth; Day, Richard et al. (2017) Two-Photon Intravital Fluorescence Lifetime Imaging of the Kidney Reveals Cell-Type Specific Metabolic Signatures. J Am Soc Nephrol 28:2420-2430
Kikuchi, Masao; Wickman, Larysa; Hodgin, Jeffrey B et al. (2015) Podometrics as a Potential Clinical Tool for Glomerular Disease Management. Semin Nephrol 35:245-55
Yu, Fa-Xing; Zhao, Bin; Guan, Kun-Liang (2015) Hippo Pathway in Organ Size Control, Tissue Homeostasis, and Cancer. Cell 163:811-28
Fukuda, Akihiro; Wickman, Larysa T; Venkatareddy, Madhusudan P et al. (2012) Urine podocin:nephrin mRNA ratio (PNR) as a podocyte stress biomarker. Nephrol Dial Transplant 27:4079-87
Fukuda, Akihiro; Wickman, Larysa T; Venkatareddy, Madhusudan P et al. (2012) Angiotensin II-dependent persistent podocyte loss from destabilized glomeruli causes progression of end stage kidney disease. Kidney Int 81:40-55
Wiggins, Jocelyn E (2012) Aging in the glomerulus. J Gerontol A Biol Sci Med Sci 67:1358-64
Fukuda, Akihiro; Chowdhury, Mahboob A; Venkatareddy, Madhusudan P et al. (2012) Growth-dependent podocyte failure causes glomerulosclerosis. J Am Soc Nephrol 23:1351-63
Chernin, Gil; Vega-Warner, Virginia; Schoeb, Dominik S et al. (2010) Genotype/phenotype correlation in nephrotic syndrome caused by WT1 mutations. Clin J Am Soc Nephrol 5:1655-62
Chernin, Gil; Heeringa, Saskia F; Vega-Warner, Virginia et al. (2010) Adequate use of allele frequencies in Hispanics--a problem elucidated in nephrotic syndrome. Pediatr Nephrol 25:261-6
Kim, Doyeob; Patel, Sanjeevkumar R; Xiao, Hong et al. (2009) The role of PTIP in maintaining embryonic stem cell pluripotency. Stem Cells 27:1516-23

Showing the most recent 10 out of 189 publications