(Taken directly from the application) Modern tissue preparation and computer based methods of morphometric quantification and documentation are essential to the projects proposed for the O'Brien Center at Vanderbilt. Over the past 5 year grant period this Core has provided expertise and essential support to the program; several critical immunolocalizations would not have been possible without the extensive panels of slides available through the Core for evaluating experimental fixatives. During the next grant period this core will continue to provide support in several key areas including: (1) histology services at the light and electron microscopic levels; specialized services for histochemistry, immunohistochemistry, in situ hybridization, and autoradiography; (2) evolving techniques including computerized image analysis with mapping and 3-D reconstruction, time-lapse video microscopy and laser capture microdissection; (3) training to center investigators and their students; (4) quantitative image analysis and video microscopy, including production of publication quality photomicrographs; (5) standardized reagents necessary for core projects. In addition, Dr. Agnes Fogo will collaborate, bringing experience with laser capture, and molecular biology techniques for dealing with tissues from the transgenic/knockout mice that comprise important experiments in each of the new projects. All of these services should significantly enhance the technical qualities of the overall research program in Nephrology.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Specialized Center (P50)
Project #
2P50DK039261-16
Application #
6551592
Study Section
Special Emphasis Panel (ZDK1)
Project Start
1987-09-01
Project End
2007-07-31
Budget Start
Budget End
Support Year
16
Fiscal Year
2002
Total Cost
Indirect Cost
Name
Vanderbilt University Medical Center
Department
Type
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37203
He, Wenjuan; Zhang, Min; Zhao, Min et al. (2014) Increased dietary sodium induces COX2 expression by activating NF?B in renal medullary interstitial cells. Pflugers Arch 466:357-367
Fujita, Hiroki; Fujishima, Hiromi; Takahashi, Keiko et al. (2012) SOD1, but not SOD3, deficiency accelerates diabetic renal injury in C57BL/6-Ins2(Akita) diabetic mice. Metabolism 61:1714-24
Zent, Roy; Harris, Raymond (2012) The mammalian kidney. Exp Cell Res 318:v
Riggins, Karen S; Mernaugh, Glenda; Su, Yan et al. (2010) MT1-MMP-mediated basement membrane remodeling modulates renal development. Exp Cell Res 316:2993-3005
Fujita, Hiroki; Fujishima, Hiromi; Chida, Shinsuke et al. (2009) Reduction of renal superoxide dismutase in progressive diabetic nephropathy. J Am Soc Nephrol 20:1303-13
Sparrow, Duncan B; Boyle, Scott C; Sams, Rebecca S et al. (2009) Placental insufficiency associated with loss of Cited1 causes renal medullary dysplasia. J Am Soc Nephrol 20:777-86
Zhang, Ming-Zhi; Xu, Jie; Yao, Bing et al. (2009) Inhibition of 11beta-hydroxysteroid dehydrogenase type II selectively blocks the tumor COX-2 pathway and suppresses colon carcinogenesis in mice and humans. J Clin Invest 119:876-85
Yao, Bing; Harris, Raymond C; Zhang, Ming-Zhi (2009) Intrarenal dopamine attenuates deoxycorticosterone acetate/high salt-induced blood pressure elevation in part through activation of a medullary cyclooxygenase 2 pathway. Hypertension 54:1077-83
Srichai, Manakan B; Hao, Chuanming; Davis, Linda et al. (2008) Apoptosis of the thick ascending limb results in acute kidney injury. J Am Soc Nephrol 19:1538-46
Boyle, Scott; Misfeldt, Andrew; Chandler, Kelly J et al. (2008) Fate mapping using Cited1-CreERT2 mice demonstrates that the cap mesenchyme contains self-renewing progenitor cells and gives rise exclusively to nephronic epithelia. Dev Biol 313:234-45

Showing the most recent 10 out of 181 publications