Progressive renal disease is caused by a process of fibrosis that relentlessly destroys normal renal architecture and function. The number of patients with end-stage renal disease continues to rise exponentially, at an annual cost to Medicare that now exceeds $12 billion. The goal of the proposed studies is to determine how abnormalities of lipoprotein metabolism, which are frequently present in patients with renal disease, contribute to the pathogenesis of renal fibrosis. The overall hypothesis to be tested is that macrophage scavenger receptors process low density lipoproteins that have been oxidatively modified within the kidney to initiate fibrosis-promoting events. It is further hypothesized that this pathway worsens fibrosis in the face of hypercholesterolemia.
Three Specific Aims are proposed. (1) To determine the effects of hypercholesterolemia on the severity of renal fibrosis and to delineate the pattern of renal scavenger receptor expression in murine models of renal fibrosis. (2) To investigate the role of the macrophage scavenger receptor class A type I/II (SR-AI/II) and scavenger receptor CD36 in renal fibrosis. (3) To elucidate intrarenal changes in pro-oxidant and anti-oxidant enzymes that could promote lipoprotein oxidation in murine models of renal disease associated with hyperlipidemia. These in vivo studies will be based on four murine models of renal disease. The functional significance of the two best characterized macrophage scavenger receptors, which are also known to participate in atherogenesis, (SR-AI/II and CD36), will be determined by comparing renal disease severity between wild-type animals and scavenger receptor-deficient animals. Bone marrow transplantation studies will be done to distinguish between the role of renal and macrophage scavenger receptors. Our long-term objective is to provide a scientific basis for the development and use of new therapies for patients with progressive renal disease. It is anticipated that the results of the proposed studies will prove that hypercholesterolemia, intra-renal oxidation of low density lipoproteins and scavenger receptor-dependent interactions with oxLDL represent an important pathogenetic pathway of progressive renal damage.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Specialized Center (P50)
Project #
2P50DK044757-11
Application #
6551010
Study Section
Special Emphasis Panel (ZDK1)
Project Start
1992-04-01
Project End
2007-03-31
Budget Start
Budget End
Support Year
11
Fiscal Year
2002
Total Cost
Indirect Cost
Name
Vanderbilt University Medical Center
Department
Type
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37203
Kaseda, Ryohei; Jabs, Kathy; Hunley, Tracy E et al. (2015) Dysfunctional high-density lipoproteins in children with chronic kidney disease. Metabolism 64:263-73
Yamamoto, Suguru; Zhong, Jiayong; Yancey, Patricia G et al. (2015) Atherosclerosis following renal injury is ameliorated by pioglitazone and losartan via macrophage phenotype. Atherosclerosis 242:56-64
Zhong, Jianyong; Yang, Hai-Chun; Kon, Valentina et al. (2014) Vitronectin-binding PAI-1 protects against the development of cardiac fibrosis through interaction with fibroblasts. Lab Invest 94:633-44
Yamamoto, Suguru; Kon, Valentina (2014) Chronic kidney disease induced dysfunction of high density lipoprotein. Clin Exp Nephrol 18:251-4
Yang, Hai-Chun; Fogo, Agnes B (2014) Mechanisms of disease reversal in focal and segmental glomerulosclerosis. Adv Chronic Kidney Dis 21:442-7
Zuo, Yiqin; Chun, Bongkwon; Potthoff, Sebastian A et al. (2013) Thymosin ?4 and its degradation product, Ac-SDKP, are novel reparative factors in renal fibrosis. Kidney Int 84:1166-75
Miyazawa, Tomoki; Zeng, Fenghua; Wang, Suwan et al. (2013) Low nitric oxide bioavailability upregulates renal heparin binding EGF-like growth factor expression. Kidney Int 84:1176-88
Yamamoto, Suguru; Yancey, Patricia G; Ikizler, T Alp et al. (2012) Dysfunctional high-density lipoprotein in patients on chronic hemodialysis. J Am Coll Cardiol 60:2372-9
Yamaguchi, Ikuyo; Tchao, Bie Nga; Burger, Megan L et al. (2012) Vascular endothelial cadherin modulates renal interstitial fibrosis. Nephron Exp Nephrol 120:e20-31
Zhong, Jianyong; Perrien, Daniel Scott; Yang, Hai-Chun et al. (2012) Maturational regression of glomeruli determines the nephron population in normal mice. Pediatr Res 72:241-8

Showing the most recent 10 out of 131 publications