Experience in the laboratory of the Center PI has demonstrated the improved efficiency, cost-saving, and success of centralizing ES cell technology. A common source of ES cells, tissue culture reagents, and methods will be used in the knock-out experiments under the supervision of experienced individuals. The PI (S.H. Orkin) will direct the ES tissue culture-mouse core and delegate responsibility to two individuals, Dr. Fong-Ying Tsai and Ms. Margie Rosenblatt (see Project I). Both are experienced in all aspects of ES cell culture and generation of germline mouse chimeras. By centralizing reagents, methods, and technology we believe that problems encountered in establishing the ES system de novo in a laboratory for purposes of a knock-out project will be eliminated. Over the tenure of this Center we envision that the ES tissue culture-mouse core will be increasingly used as a resource to facilitate collaborations with other investigators in the Harvard Medical area. Core A will provide ES cell, tissue culture reagents, and advice for the isolation of gene targeted clones. Once gene targeted clones are identified, the core will provide for injection of the clones into mouse blastocysts for the generation of chimeras, test breed chimeras for germline transmission, and breed heterozygotes to homozygosity.

Project Start
1998-09-15
Project End
1999-08-31
Budget Start
1997-10-01
Budget End
1998-09-30
Support Year
5
Fiscal Year
1998
Total Cost
Indirect Cost
Name
Children's Hospital Boston
Department
Type
DUNS #
076593722
City
Boston
State
MA
Country
United States
Zip Code
02115
Bauer, Daniel E; Orkin, Stuart H (2015) Hemoglobin switching's surprise: the versatile transcription factor BCL11A is a master repressor of fetal hemoglobin. Curr Opin Genet Dev 33:62-70
Kumar, Lalit; Chou, Janet; Yee, Christina S K et al. (2014) Leucine-rich repeat containing 8A (LRRC8A) is essential for T lymphocyte development and function. J Exp Med 211:929-42
Paik, Elizabeth J; Mahony, Shaun; White, Richard M et al. (2013) A Cdx4-Sall4 regulatory module controls the transition from mesoderm formation to embryonic hematopoiesis. Stem Cell Reports 1:425-36
Boatman, Sonja; Barrett, Francesca; Satishchandran, Sruthi et al. (2013) Assaying hematopoiesis using zebrafish. Blood Cells Mol Dis 51:271-6
Deshpande, Aniruddha J; Chen, Liying; Fazio, Maurizio et al. (2013) Leukemic transformation by the MLL-AF6 fusion oncogene requires the H3K79 methyltransferase Dot1l. Blood 121:2533-41
Jing, Lili; Durand, Ellen M; Ezzio, Catherine et al. (2012) In situ hybridization assay-based small molecule screening in zebrafish. Curr Protoc Chem Biol 4:
Kalaitzidis, Demetrios; Sykes, Stephen M; Wang, Zhu et al. (2012) mTOR complex 1 plays critical roles in hematopoiesis and Pten-loss-evoked leukemogenesis. Cell Stem Cell 11:429-39
Alexander, Matthew S; Kawahara, Genri; Kho, Alvin T et al. (2011) Isolation and transcriptome analysis of adult zebrafish cells enriched for skeletal muscle progenitors. Muscle Nerve 43:741-50
Baffour-Awuah, Nana Yaa; Delemarre, Eveline; Fujiwara, Yuko et al. (2011) Characterization of expression in mice of a transgene containing 3.3 kb of the human lactase-phlorizin hydrolase (LPH) 5' flanking sequence. Dig Dis Sci 56:59-69
Guyon, Jeffrey R; Mosley, Alycia N; Jun, Susan J et al. (2005) Delta-sarcoglycan is required for early zebrafish muscle organization. Exp Cell Res 304:105-15

Showing the most recent 10 out of 23 publications