Systems biology seeks to understand relationships between the design of biological systems and the complex tasks they have been molded, by natural selection, to perform. In biological systems, events happen not only in time, but also in the realm of space: Cells and organisms recognize spatial information (e.g. chemotactic gradients, visual patterns), generate spatial information (body patterns, tissue architectures), and may even use spatial information as a computational tool. The focus of the proposed center is on how spatial information is handled by biological systems, and how it ultimately is used to create biological form (morphogenesis). The center will support a program of interdisciplinary research, technology development, training, and outreach aimed at furthering the development of the spatial side of systems biology. The research projects are organized into three themes, focusing on pattern formation during development, the control of proliferative dynamics in epithelia, and spatial aspects of the regulation of intracellular signaling. Projects within these themes will take advantage of a variety of approaches (genetics, biochemistry, biophysics, mathematical modeling, computation) and experimental organisms (yeast, flies, zebrafish, frogs, and mice). Technology development will focus on mathematical/computational tools and optical biology tools that address some of the unique challenges associated with measuring and modeling spatially dynamic systems. Training will include programs at the undergraduate, graduate and postgraduate levels for educating the next generation of systems biologists. The goals of the program will be met through the collaborative efforts of twenty faculty at U.C. Irvine, representing a mix of biologists, mathematicians, physicists, engineers and computer scientists. Among other things, the efforts of the center are expected to identify common principles in how different kinds of biological systems manage the spatial world. Such insights will have a broad impact on a variety of health-related areas including human development and birth defects, stem cells and regeneration, normal and tumor cell growth, and basic physiology.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Specialized Center (P50)
Project #
5P50GM076516-03
Application #
7670438
Study Section
Special Emphasis Panel (ZGM1-CBCB-2 (SB))
Program Officer
Lyster, Peter
Project Start
2007-08-01
Project End
2012-07-31
Budget Start
2009-08-01
Budget End
2010-07-31
Support Year
3
Fiscal Year
2009
Total Cost
$2,742,674
Indirect Cost
Name
University of California Irvine
Department
Anatomy/Cell Biology
Type
Schools of Arts and Sciences
DUNS #
046705849
City
Irvine
State
CA
Country
United States
Zip Code
92697
Hedde, Per Niklas; Gratton, Enrico (2018) Selective plane illumination microscopy with a light sheet of uniform thickness formed by an electrically tunable lens. Microsc Res Tech 81:924-928
Kobylkevich, Brian M; Sarkar, Anyesha; Carlberg, Brady R et al. (2018) Reversing the direction of galvanotaxis with controlled increases in boundary layer viscosity. Phys Biol 15:036005
Sameni, Sara; Malacrida, Leonel; Tan, Zhiqun et al. (2018) Alteration in Fluidity of Cell Plasma Membrane in Huntington Disease Revealed by Spectral Phasor Analysis. Sci Rep 8:734
Konstorum, Anna; Lowengrub, John S (2018) Activation of the HGF/c-Met axis in the tumor microenvironment: A multispecies model. J Theor Biol 439:86-99
Yan, Huaming; Konstorum, Anna; Lowengrub, John S (2018) Three-Dimensional Spatiotemporal Modeling of Colon Cancer Organoids Reveals that Multimodal Control of Stem Cell Self-Renewal is a Critical Determinant of Size and Shape in Early Stages of Tumor Growth. Bull Math Biol 80:1404-1433
Ranjit, Suman; Malacrida, Leonel; Gratton, Enrico (2018) Differences between FLIM phasor analyses for data collected with the Becker and Hickl SPC830 card and with the FLIMbox card. Microsc Res Tech 81:980-989
Kim, Seong M; Nguyen, Tricia T; Ravi, Archna et al. (2018) PTEN Deficiency and AMPK Activation Promote Nutrient Scavenging and Anabolism in Prostate Cancer Cells. Cancer Discov 8:866-883
Staaf, Elina; Hedde, Per Niklas; Bagawath Singh, Sunitha et al. (2018) Educated natural killer cells show dynamic movement of the activating receptor NKp46 and confinement of the inhibitory receptor Ly49A. Sci Signal 11:
Santos, Rommel A; Fuertes, Ariel J C; Short, Ginger et al. (2018) DSCAM differentially modulates pre- and postsynaptic structural and functional central connectivity during visual system wiring. Neural Dev 13:22
Koay, Eugene J; Lee, Yeonju; Cristini, Vittorio et al. (2018) A Visually Apparent and Quantifiable CT Imaging Feature Identifies Biophysical Subtypes of Pancreatic Ductal Adenocarcinoma. Clin Cancer Res 24:5883-5894

Showing the most recent 10 out of 404 publications