THEME A - CONTROL OF PATTERN (Arthur Lander, Theme Leader) I Understanding pattern - the regular arrangement of cells and cellular behaviors in space - is one of the oldest problems in biology. Over the past half-century, two views of pattern formation have flourished [63,64], both appealing to the actions of molecules, termed morphogens, that spread within tissues. In """"""""boundary-organized' patterning, long-range morphogen gradients provide positional Information, giving cells their coordinates with respect to a frame of reference. In """"""""self-organizing"""""""" patterning, morphogens act over shorter range to induce or repress expression of themselves or other morphogens, which in turn influences their own activity. Such feedback creates instabilities that lead to spontaneous division of cell groups into repeating units.
Aim A l , below, explores changing concepts in how long-range morphogens control pattern.
Aim A2 pursues the idea that patterning is often neither boundary- nor self-organized, but a combination of both.
A third aim explores how pattern control and growth control are coordinated (it is designated Aim ABS, to reflect the fact that it will be a joint effort between Theme A [pattern] and Theme B [growth control]).

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Specialized Center (P50)
Project #
5P50GM076516-08
Application #
8731905
Study Section
Special Emphasis Panel (ZGM1-CBCB-3)
Project Start
Project End
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
8
Fiscal Year
2014
Total Cost
$315,274
Indirect Cost
$106,184
Name
University of California Irvine
Department
Type
DUNS #
046705849
City
Irvine
State
CA
Country
United States
Zip Code
92697
Lei, Jinzhi; Nie, Qing; Chen, Dong-Bao (2018) A single-cell epigenetic model for paternal psychological stress-induced transgenerational reprogramming in offspring. Biol Reprod 98:846-855
Huang, Jian; Chen, Long; Rui, Hongxing (2018) Multigrid Methods for A Mixed Finite Element Method of The Darcy-Forchheimer Model. J Sci Comput 74:396-411
Mahlbacher, Grace; Curtis, Louis T; Lowengrub, John et al. (2018) Mathematical modeling of tumor-associated macrophage interactions with the cancer microenvironment. J Immunother Cancer 6:10
McLelland, Bryce T; Lin, Bin; Mathur, Anuradha et al. (2018) Transplanted hESC-Derived Retina Organoid Sheets Differentiate, Integrate, and Improve Visual Function in Retinal Degenerate Rats. Invest Ophthalmol Vis Sci 59:2586-2603
Davey, Rhonda J; Digman, Michelle A; Gratton, Enrico et al. (2018) Quantitative image mean squared displacement (iMSD) analysis of the dynamics of profilin 1 at the membrane of live cells. Methods 140-141:119-125
Rackauckas, Christopher; Schilling, Thomas; Nie, Qing (2018) Mean-Independent Noise Control of Cell Fates via Intermediate States. iScience 3:11-20
Malacrida, Leonel; Gratton, Enrico (2018) LAURDAN fluorescence and phasor plots reveal the effects of a H2O2 bolus in NIH-3T3 fibroblast membranes dynamics and hydration. Free Radic Biol Med 128:144-156
Malacrida, Leonel; Rao, Estella; Gratton, Enrico (2018) Comparison between iMSD and 2D-pCF analysis for molecular motion studies on in vivo cells: The case of the epidermal growth factor receptor. Methods 140-141:74-84
Hedde, Per Niklas; Gratton, Enrico (2018) Selective plane illumination microscopy with a light sheet of uniform thickness formed by an electrically tunable lens. Microsc Res Tech 81:924-928
Kobylkevich, Brian M; Sarkar, Anyesha; Carlberg, Brady R et al. (2018) Reversing the direction of galvanotaxis with controlled increases in boundary layer viscosity. Phys Biol 15:036005

Showing the most recent 10 out of 404 publications