The X-ray Crystallography Core facility provides excellent crystallization, data collection, and crystallographic computing facilities. It also provides outstanding human resources in the form of talented crystallographers and a strong training environment. Location of the Core facilities adjacent to the Hill, Sundquist, and Kay labs on the third floor of the EEJMRB provides a convenient and accessible environment that maximizes productive formal and informal interactions. A postdoctoral fellow and a student within this Core are dedicated to Center projects (VPS4 and ALIX). The two managers and technician (50:50 with Bacterial Expression Core) provide expertise and support for additional projects. The core can also support use by other Center personnel and projects as appropriate. For example, Steve Alam (Manager Eukaryotic Protein Expression Core) recently played the lead role on determination of the EAP45(ESCRTII) GLUE-ubiquitin crystal structure with assistance from Frank Whitby17;Anna Scott determined the structure of human VPS4B with assistance from Whitby19;Schubert played the lead crystallographic role on the TSG101-ubiquitin complex20, and Andy VanDemark, a postdoc in the Hill lab, recently determined crystal structures of a potent HIV-1 entry inhibitor complex with the gp41 N-peptide (submitted) and a sterically restricted N-peptide antigen (in preparation) in collaborations with the Kay lab. The strength of the Core is enhanced by interactions with major national facilities and structural genomics consortia. Extensive use of remote data collection services (e.g, at NSLS and SSRL) typically enables synchrotron data collection within about a week of identifying a suitable crystal. We routinely utilize the Hauptman-Woodward Institute crystallization facility of the Northeastern Structural Genomics Consortium. This approach provided initial conditions that led to the preliminary crystals of dodecameric Vps4p after vapor diffusion trials failed at our home lab. We recently initiated a novel collaboration with the Joint Centers for Structural Genomics that will allow the full power of high-throughput methodology to be applied to the focused scientific questions being addressed by our program. This arrangement will also allow us to accommodate a potentially high demand for assistance with crystal structure determinations by the larger community of HIV biologists, such as through the R21 and other mechanisms.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Specialized Center (P50)
Project #
5P50GM082545-07
Application #
8538424
Study Section
Special Emphasis Panel (ZRG1-AARR-K)
Project Start
Project End
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
7
Fiscal Year
2013
Total Cost
$308,254
Indirect Cost
$101,372
Name
University of Utah
Department
Type
DUNS #
009095365
City
Salt Lake City
State
UT
Country
United States
Zip Code
84112
Wang, Haoqing; Barnes, Christopher O; Yang, Zhi et al. (2018) Partially Open HIV-1 Envelope Structures Exhibit Conformational Changes Relevant for Coreceptor Binding and Fusion. Cell Host Microbe 24:579-592.e4
Pastuzyn, Elissa D; Day, Cameron E; Kearns, Rachel B et al. (2018) The Neuronal Gene Arc Encodes a Repurposed Retrotransposon Gag Protein that Mediates Intercellular RNA Transfer. Cell 172:275-288.e18
Wagner, Jonathan M; Christensen, Devin E; Bhattacharya, Akash et al. (2018) General Model for Retroviral Capsid Pattern Recognition by TRIM5 Proteins. J Virol 92:
Donaldson, G P; Ladinsky, M S; Yu, K B et al. (2018) Gut microbiota utilize immunoglobulin A for mucosal colonization. Science 360:795-800
Bailey, Lucas J; Sheehy, Kimberly M; Dominik, Pawel K et al. (2018) Locking the Elbow: Improved Antibody Fab Fragments as Chaperones for Structure Determination. J Mol Biol 430:337-347
Pak, Alexander J; Voth, Gregory A (2018) Advances in coarse-grained modeling of macromolecular complexes. Curr Opin Struct Biol 52:119-126
Redman, Joseph S; Francis, J Nicholas; Marquardt, Robert et al. (2018) Pharmacokinetic and Chemical Synthesis Optimization of a Potent d-Peptide HIV Entry Inhibitor Suitable for Extended-Release Delivery. Mol Pharm 15:1169-1179
Larsen, Kevin P; Mathiharan, Yamuna Kalyani; Kappel, Kalli et al. (2018) Architecture of an HIV-1 reverse transcriptase initiation complex. Nature 557:118-122
Carter, Stephen D; Mageswaran, Shrawan K; Farino, Zachary J et al. (2018) Distinguishing signal from autofluorescence in cryogenic correlated light and electron microscopy of mammalian cells. J Struct Biol 201:15-25
Shepherd, Jason D (2018) Arc - An endogenous neuronal retrovirus? Semin Cell Dev Biol 77:73-78

Showing the most recent 10 out of 180 publications