Biomedical research is at a critical juncture in which vast amounts of information on molecules and molecular interactions have been collected, but methods to integrate and analyze these data are still in their infancy. The sheer number and variety of technologies is staggering. In terms of molecules, global mRNA profiles are obtained using DNA microarrays 178 or next-generation sequencing 179, while changes in protein abundance 180, protein phosphorylation state 181 and metabolite concentrations 182 are quantified with mass spectrometry, NMR and other advanced techniques. In terms of molecular interactions, protein-protein binding is measured using yeast-two-hybrid assays 183,184,185,186,187,188,189,190, LUMIER 191, affinity purification coupled to mass spectrometry 192,193,194, or kinase-substrate arrays 195. Protein-DNA and protein-RNA binding are measured with technologies such as chIP-chip 196,197,198, chIP-PET 199,200, DAM-ID 201, double-stranded DNA arrays 202, yeastone- hybrid 203,204, or RIP-chip 205. There has also been an explosion in techniques for mapping genetic networks, including Synthetic Genetic Arrays 206, dSLAM 207, EMAP 208, high-throughput liquid culture assays 209, and combinatorial RNAi 210, which rapidly identify epistatic relationships such as synthetic lethality or suppression in an automated fashion. Large networks are generated by functional genomic studies, involving panels of gene knock-outs 211,212,213,214,215 or analysis of expression Quantitative Trait Loci (eQTL) 216,217,218,219. Alternatively, networks are being defined using functional inter-relationships, such as linking two proteins that are co-expressed or that are given the same protein functional annotation 220. This enormous collection of measurement types necessitates a bioinformatic framework to integrate, filter, and interpret the resulting data. The Mission of the Network Assembly Core is to provide tools for integration and visualization of network level and other genome-scale data, assembly of these data into biological networks in which functional network modules can be identified, and storage and dissemination of data and resulting models. The director, Dr. Ideker is an established leader in the area of bioinformatics dedicated to developing such methods.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Specialized Center (P50)
Project #
5P50GM085764-05
Application #
8729593
Study Section
Special Emphasis Panel (ZGM1-CBCB-2)
Project Start
Project End
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
5
Fiscal Year
2014
Total Cost
$129,393
Indirect Cost
$45,914
Name
University of California San Diego
Department
Type
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Antonova-Koch, Yevgeniya; Meister, Stephan; Abraham, Matthew et al. (2018) Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science 362:
Zarrinpar, Amir; Chaix, Amandine; Xu, Zhenjiang Z et al. (2018) Antibiotic-induced microbiome depletion alters metabolic homeostasis by affecting gut signaling and colonic metabolism. Nat Commun 9:2872
Cowell, Annie N; Istvan, Eva S; Lukens, Amanda K et al. (2018) Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science 359:191-199
Hoeksema, Marten A; Glass, Christopher K (2018) Nature and nurture of tissue-specific macrophage phenotypes. Atherosclerosis :
Preissl, Sebastian; Fang, Rongxin; Huang, Hui et al. (2018) Single-nucleus analysis of accessible chromatin in developing mouse forebrain reveals cell-type-specific transcriptional regulation. Nat Neurosci 21:432-439
Cowell, Annie N; Valdivia, Hugo O; Bishop, Danett K et al. (2018) Exploration of Plasmodium vivax transmission dynamics and recurrent infections in the Peruvian Amazon using whole genome sequencing. Genome Med 10:52
Link, Verena M; Duttke, Sascha H; Chun, Hyun B et al. (2018) Analysis of Genetically Diverse Macrophages Reveals Local and Domain-wide Mechanisms that Control Transcription Factor Binding and Function. Cell 173:1796-1809.e17
Zhang, Wei; Ma, Jianzhu; Ideker, Trey (2018) Classifying tumors by supervised network propagation. Bioinformatics 34:i484-i493
Xiong, Liyang; Cooper, Robert; Tsimring, Lev S (2018) Coexistence and Pattern Formation in Bacterial Mixtures with Contact-Dependent Killing. Biophys J 114:1741-1750
Cooper, Robert; Tsimring, Lev; Hasty, Jeff (2018) Microfluidics-Based Analysis of Contact-dependent Bacterial Interactions. Bio Protoc 8:

Showing the most recent 10 out of 207 publications