The objective of the Genomics and Genome Engineering Core (GGEC) is to provide cutting-edge, reliable and innovative genomic technologies enabling Center investigators to accomplish the individual aims of their research. It also seeks to disseminate new assays and protocols developed by the Center to the scientific community by offering training and education in genomics and genome editing. Doing so enhances the ability of Center Investigators and the wider scientific community to implement these technologies in their research. The GGEC is comprised of three well-established and highly functional facilities on the Torrey Pines research mesa: the UCSD Institute for Genomic Medicine Genomics Center, the UCSD Center for Computational Biology, and the Sanford-Burnham Medical Research Institute Functional Genomics Facility. The GGEC supports the research of the SDCSB faculty through the following four Specific Aims. First, it enables investigators to generate high-throughput genomics datasets by providing the necessary services, expertise, equipment, and training. Second, it provides expertise for processing genomics data, including basic analysis of individual experiments as well as integration of datasets from multiple platforms. Third, it enables loss-of-function (siRNA, shRNA, miRNA inhibitors, CRISPR-Cas9) and gain-of-function (ORFs, miRNA mimics) studies by high-throughput screening in cultured cells. Fourth and finally, it disseminates workflows and assays developed by center investigators to the wider scientific community. GGEC technologies will be highly used by all four SDCSB Research Projects.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Specialized Center (P50)
Project #
5P50GM085764-09
Application #
9520168
Study Section
Special Emphasis Panel (ZGM1)
Project Start
2010-09-18
Project End
Budget Start
2018-06-01
Budget End
2019-05-31
Support Year
9
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of California, San Diego
Department
Type
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Cooper, Robert; Tsimring, Lev; Hasty, Jeff (2018) Microfluidics-Based Analysis of Contact-dependent Bacterial Interactions. Bio Protoc 8:
Martinez-Corral, Rosa; Liu, Jintao; Süel, Gürol M et al. (2018) Bistable emergence of oscillations in growing Bacillus subtilis biofilms. Proc Natl Acad Sci U S A 115:E8333-E8340
Zhang, Wei; Bojorquez-Gomez, Ana; Velez, Daniel Ortiz et al. (2018) A global transcriptional network connecting noncoding mutations to changes in tumor gene expression. Nat Genet 50:613-620
Dai, Xiongfeng; Zhu, Manlu; Warren, Mya et al. (2018) Slowdown of Translational Elongation in Escherichia coli under Hyperosmotic Stress. MBio 9:
Muse, Evan D; Yu, Shan; Edillor, Chantle R et al. (2018) Cell-specific discrimination of desmosterol and desmosterol mimetics confers selective regulation of LXR and SREBP in macrophages. Proc Natl Acad Sci U S A 115:E4680-E4689
Bui, Nam; Huang, Justin K; Bojorquez-Gomez, Ana et al. (2018) Disruption of NSD1 in Head and Neck Cancer Promotes Favorable Chemotherapeutic Responses Linked to Hypomethylation. Mol Cancer Ther 17:1585-1594
Huang, Justin K; Carlin, Daniel E; Yu, Michael Ku et al. (2018) Systematic Evaluation of Molecular Networks for Discovery of Disease Genes. Cell Syst 6:484-495.e5
Ozturk, Kivilcim; Dow, Michelle; Carlin, Daniel E et al. (2018) The Emerging Potential for Network Analysis to Inform Precision Cancer Medicine. J Mol Biol 430:2875-2899
Yan, Jian; Chen, Shi-An A; Local, Andrea et al. (2018) Histone H3 lysine 4 monomethylation modulates long-range chromatin interactions at enhancers. Cell Res 28:204-220
Antonova-Koch, Yevgeniya; Meister, Stephan; Abraham, Matthew et al. (2018) Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science 362:

Showing the most recent 10 out of 207 publications