CORE ABSTRACT The purpose of the Bioanalytical Core is to provide analytical capability for Projects #1-4 in human subjects and murine models of sepsis, including genomic, biochemical, and cell-functional analysis of isolated leukocyte populations, plasma, and tissue(s) of interest (e.g., skeletal muscle). The Core will: 1) characterize leukocyte populations phenotypically;2) measure acute-phase protein, plasma cytokine, and select growth factor concentrations;3) obtain a consistent genome-wide and gene-specific expression analysis profile from enriched cell populations and tissues;4) assess protein catabolism and mitochondrial bioenergetics in muscle tissues by measuring mitochondrial function, reactive oxygen species, and catabolism-atrophy related pathways;and 5) provide a central scientific analysis platform for all projects.
Aim 1. To phenotype blood and tissue leukocytes from humans and murine models of sepsis. We will focus on early myeloid cell populations derived from whole blood in humans with sepsis, and from bone marrow and spleen in mice with sepsis.
Aim 2. To provide plasma or serum acute-phase protein, cytokine, and growth factor concentration measurements for clinical and laboratory studies using Luminex xMAP"""""""" technology and ELISA. We will use a MILLIPLEX Analyzer 3.1 xPONENT"""""""" System and standard ELISA microplate readers.
Aim 3. To determine genome-wide and individual gene expression in both human and murine leukocytes and select tissue samples. We will assess exon-level, genome-wide expression with Affymetrix GeneChip(R) technology (HH/2) and determine expression of selected leukocyte genes by nanoString nCounter(R).
Aim 4. To assess catabolism, bioenergetics, and select pathways of atrophy with novel and standard methodologies. The methodologies will allow us to better understand molecular and biochemical changes related to muscle atrophy and energy decline in human subjects and murine models.
Aim 5. To develop innovative new methodologies and provide a central scientific platform for future discovery. The Core will collaborate with all projects for the integration of dynamic scientific knowledge and discovery and decide on newly innovative methodologies for future analysis. Additionally, the Analytical Studies Core will centralize the analytical capabilities that require sophistication and quality assurance beyond that available to individual projects. It will assure accuracy and standardization of complex analytical protocols that will be cost-efficient for the P50 Center.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Specialized Center (P50)
Project #
1P50GM111152-01
Application #
8740716
Study Section
Special Emphasis Panel (ZGM1)
Project Start
2014-09-01
Project End
2019-05-31
Budget Start
2014-09-01
Budget End
2015-05-31
Support Year
1
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Florida
Department
Type
DUNS #
City
Gainesville
State
FL
Country
United States
Zip Code
32611
Sartelli, Massimo; Kluger, Yoram; Ansaloni, Luca et al. (2018) Raising concerns about the Sepsis-3 definitions. World J Emerg Surg 13:6
Loftus, Tyler J; Rosenthal, Martin D; Croft, Chasen A et al. (2018) Effect of Time to Operation on Value of Care in Acute Care Surgery. World J Surg 42:2356-2363
Loftus, Tyler J; Efron, Philip A; Bala, Trina M et al. (2018) The impact of standardized protocol implementation for surgical damage control and temporary abdominal closure after emergent laparotomy. J Trauma Acute Care Surg :
Loftus, Tyler J; Mira, Juan C; Stortz, Julie A et al. (2018) Persistent Inflammation and Anemia among Critically Ill Septic Patients. J Trauma Acute Care Surg :
Efron, Philip A; Mohr, Alicia M; Bihorac, Azra et al. (2018) Persistent inflammation, immunosuppression, and catabolism and the development of chronic critical illness after surgery. Surgery 164:178-184
Rosenthal, Martin D; Kamel, Amir Y; Rosenthal, Cameron M et al. (2018) Chronic Critical Illness: Application of What We Know. Nutr Clin Pract 33:39-45
Loftus, Tyler J; Mohr, Alicia M; Moldawer, Lyle L (2018) Dysregulated myelopoiesis and hematopoietic function following acute physiologic insult. Curr Opin Hematol 25:37-43
Bihorac, Azra; Ozrazgat-Baslanti, Tezcan; Ebadi, Ashkan et al. (2018) MySurgeryRisk: Development and Validation of a Machine-learning Risk Algorithm for Major Complications and Death After Surgery. Ann Surg :
Loftus, Tyler J; Kannan, Kolenkode B; Carter, Christy S et al. (2018) Persistent injury-associated anemia in aged rats. Exp Gerontol 103:63-68
Stortz, Julie A; Mira, Juan C; Raymond, Steven L et al. (2018) Benchmarking clinical outcomes and the immunocatabolic phenotype of chronic critical illness after sepsis in surgical intensive care unit patients. J Trauma Acute Care Surg 84:342-349

Showing the most recent 10 out of 110 publications