Dilated cardiomyopathy is a multi-factorial disease that includes both the hereditary and acquired forms of cardiomyopathy. Recent experiments have shown that hereditary cardiomyopathy in humans can be associated with genetic defects in components of the dystrophin-glycoprotein complex. For example, mutations in the dystrophin gene lead to a high incidence of cardiomyopathy in Duchenne and Becker muscular dystrophy, and can caused X-linked dilated cardiomyopathy. Mutations in the genes for the sarcoglycans are responsible for limb girdle muscular dystrophy and are often quite associated with cardiomyopathy. In addition, our preliminary data links an acquired form of cardiomyopathy, enteroviral infection, with disruption of the dystrophin-glycoprotein complex. Thus, evidence is accumulating that the dystrophin-glycoprotein complex has a critical role in the genesis of hereditary and acquired cardiomyopathy. Dystroglycan is a key component of the dystrophin- glycoprotein complex that links the cytoskeletal protein dystrophin to the extracellular matrix protein laminin-2. Recent experiments with dystroglycan null ES cells have demonstrated that dystroglycan is required for basement membrane assembly but not cardiac myocyte differentiation. Sarcoglycans interact closely with dystroglycan and recent studies of sarcoglycan null mice have suggested that the underlying mechanism of sarcoglycan related cardiomyopathy is due to the dysfunction of vascular smooth muscle. The overall goal of this project is to test the hypothesis that the dysfunction of the dystrophin-glycoprotein complex can lead to dilated to dilated cardiomyopathy. We plan to test the following three hypotheses: 1) disruption of dystroglycan in the cardiac myocyte is sufficient to disrupt normal basement membrane assembly and induce cardiomyopathy; 2) disruption of sarcoglycan function in the vascular smooth muscle is sufficient and necessary to induce the cardiomyopathy that occurs with genetic alteration of the vascular smooth muscle is sufficient and necessary to induce the cardiomyopathy; 2) disruption of sarcoglycan function in the vascular smooth muscle is sufficient and necessary to induce the cardiomyopathy that occurs with genetic alteration of the sarcoglycan complex; and 3) cleavage of dystrophin in the cardiac myocyte contributes significantly to to the cardiomyopathy of enteroviral infection. To directly examine dystroglycan's function in the heart we have proposed experiments in the first specific aim to circumvent the early lethality of dystroglycan null mutation in order to analyze dystroglycan's role in cardiac basement membrane assembly and cardiac function..
The second aim i s to investigate the regulation of the dystroglycan complex by the sarcoglycans in vascular smooth muscle of the heart. For this aim mice with a specific deficiency in delta-sarcoglycan in smooth muscle will be produced.
Specific aims three and four identify the mechanisms of enteroviral protease 2A mediated cleavage of dystrophin and determine the significance of this cleavage in the intact heart. The complimentary approach is outlined in these specific aims will yield a new understanding of the role of dystrophin-glycoprotein complex in both hereditary and acquired cardiomyopathy.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Specialized Center (P50)
Project #
5P50HL053773-07
Application #
6424548
Study Section
Special Emphasis Panel (ZHL1)
Project Start
2001-03-01
Project End
2002-02-28
Budget Start
Budget End
Support Year
7
Fiscal Year
2001
Total Cost
$139,182
Indirect Cost
Name
University of California San Diego
Department
Type
DUNS #
077758407
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Hirai, Maretoshi; Cattaneo, Paola; Chen, Ju et al. (2016) Revisiting Preadolescent Cardiomyocyte Proliferation in Mice. Circ Res 118:916-919
Swaney, James S; Patel, Hemal H; Yokoyama, Utako et al. (2006) Focal adhesions in (myo)fibroblasts scaffold adenylyl cyclase with phosphorylated caveolin. J Biol Chem 281:17173-9
Swaney, James S; Roth, David M; Olson, Erik R et al. (2005) Inhibition of cardiac myofibroblast formation and collagen synthesis by activation and overexpression of adenylyl cyclase. Proc Natl Acad Sci U S A 102:437-42
Insel, Paul A; Head, Brian P; Ostrom, Rennolds S et al. (2005) Caveolae and lipid rafts: G protein-coupled receptor signaling microdomains in cardiac myocytes. Ann N Y Acad Sci 1047:166-72
Head, Brian P; Patel, Hemal H; Roth, David M et al. (2005) G-protein-coupled receptor signaling components localize in both sarcolemmal and intracellular caveolin-3-associated microdomains in adult cardiac myocytes. J Biol Chem 280:31036-44
Riddle, Evan L; Schwartzman, Raul A; Bond, Meredith et al. (2005) Multi-tasking RGS proteins in the heart: the next therapeutic target? Circ Res 96:401-11
Lorenzen-Schmidt, Ilka; Stuyvers, Bruno D; ter Keurs, Henk E D J et al. (2005) Young MLP deficient mice show diastolic dysfunction before the onset of dilated cardiomyopathy. J Mol Cell Cardiol 39:241-50
Tang, Chih-Min; Insel, Paul A (2004) GPCR expression in the heart; ""new"" receptors in myocytes and fibroblasts. Trends Cardiovasc Med 14:94-9
Roth, David M; Lai, N Chin; Gao, Mei Hua et al. (2004) Indirect intracoronary delivery of adenovirus encoding adenylyl cyclase increases left ventricular contractile function in mice. Am J Physiol Heart Circ Physiol 287:H172-7
Iwanaga, Yoshitaka; Hoshijima, Masahiko; Gu, Yusu et al. (2004) Chronic phospholamban inhibition prevents progressive cardiac dysfunction and pathological remodeling after infarction in rats. J Clin Invest 113:727-36

Showing the most recent 10 out of 74 publications