The Animal Model Support Core will contribute resources, standardized protocols and reagents to collaborative studies between SCOR investigators. The Core is directed by S. Alex Mitsialis, Ph.D. This Core will be responsible for the following specific functions: (a) Supply to SCOR investigators engaged in collaborative studies experimental animals from all four mouse models by managing the expansion of specific mouse lines, setting up crosses between transgenic lines and by genotyping the progeny, as needed. (b) Maintain the Oxycycler environmental oxygen control chambers and use them to expose animals to hypoxia and hyperoxia under defined experimental protocols, in order to insure consistency and reproducibility in studies involving these two injury models, and (c) Design and produce a DNA microarray intended to analyze lung injury and inflammation in the mouse and support the SCOR investigators in applying this technology towards a systematic analysis of differential gene expression in the mouse chronic lung disease models.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Specialized Center (P50)
Project #
5P50HL067669-02
Application #
6655330
Study Section
Special Emphasis Panel (ZHL1)
Project Start
2002-08-01
Project End
2003-07-31
Budget Start
2002-08-01
Budget End
2003-07-31
Support Year
2
Fiscal Year
2002
Total Cost
$278,556
Indirect Cost
Name
Children's Hospital Boston
Department
Type
DUNS #
076593722
City
Boston
State
MA
Country
United States
Zip Code
02115
Gregory, Katherine E; Winston, Abigail B; Yamamoto, Hidemi S et al. (2014) Urinary intestinal fatty acid binding protein predicts necrotizing enterocolitis. J Pediatr 164:1486-8
Hansmann, Georg; Fernandez-Gonzalez, Angeles; Aslam, Muhammad et al. (2012) Mesenchymal stem cell-mediated reversal of bronchopulmonary dysplasia and associated pulmonary hypertension. Pulm Circ 2:170-81
Dib, Marwan; Zsengeller, Zsuzsanna; Mitsialis, Alex et al. (2009) A paradoxical protective role for the proinflammatory peptide substance P receptor (NK1R) in acute hyperoxic lung injury. Am J Physiol Lung Cell Mol Physiol 297:L687-97
Fernandez-Gonzalez, Angeles; Kourembanas, Stella; Wyatt, Todd A et al. (2009) Mutation of murine adenylate kinase 7 underlies a primary ciliary dyskinesia phenotype. Am J Respir Cell Mol Biol 40:305-13
Aslam, Muhammad; Baveja, Rajiv; Liang, Olin D et al. (2009) Bone marrow stromal cells attenuate lung injury in a murine model of neonatal chronic lung disease. Am J Respir Crit Care Med 180:1122-30
Fredenburgh, Laura E; Liang, Olin D; Macias, Alvaro A et al. (2008) Absence of cyclooxygenase-2 exacerbates hypoxia-induced pulmonary hypertension and enhances contractility of vascular smooth muscle cells. Circulation 117:2114-22
Ashour, Khalid; Shan, Lin; Lee, Jong Hwan et al. (2006) Bombesin inhibits alveolarization and promotes pulmonary fibrosis in newborn mice. Am J Respir Crit Care Med 173:1377-85
Wu, Xinqi; Chang, Mun Seog; Mitsialis, S Alex et al. (2006) Hypoxia regulates bone morphogenetic protein signaling through C-terminal-binding protein 1. Circ Res 99:240-7
Christou, Helen; Bailey, Nicole; Kluger, Morgan S et al. (2005) Extracellular acidosis induces heme oxygenase-1 expression in vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 288:H2647-52
Zampetaki, A; Mitsialis, S A; Pfeilschifter, J et al. (2004) Hypoxia induces macrophage inflammatory protein-2 (MIP-2) gene expression in murine macrophages via NF-kappaB: the prominent role of p42/ p44 and PI3 kinase pathways. FASEB J 18:1090-2