The hippocampus in intact animals, in slice preparation, and as isolated neurons in culture offers an experimental opportunity to study both long- term depression (LTD) and long-term potentiation (LTD), forms of synaptic plasticity utilized in learning and memory. Ca2+ is a key signaling molecular regulating synaptic plasticity in the hippocampus and we will focus on several aspects of Ca2+ action including the activation of protein kinases/phosphatases, nitric oxide synthase, and transcription of genes that underlie changes in synaptic function during LTD and LTP. Nitric oxide (no) is a retrograde messenger that we have found to stimulate synaptic release in a Ca2+-independent manner. We have collaborated with Dr. Richard Scheller to demonstrate NO alters protein-protein interactions among the synaptic proteins VAMP, syntaxin, n-secl, and SNAP-25 that may be responsible for such release. We will define, quantitate, and identify the sites of these changes. We will determine which neurotransmitter classes are affected and whether NO alters stimulated release. We have demonstrated a mechanism by which multifunctional CaM kinase II may be switched to a Ca2+ -independent species in a stimulus frequency- dependent manner. In collaboration with Dr. Richard Tsien we will correlate activation of the kinase at various frequencies that elicit LTD or LTP in hippocampal cultures. Immunocytochemistry with phosphoselective Ab and biochemical analysis will compare antagonism between CaM kinase II and calcineurin, a Ca2+-dependent phosphatase. We will examine how Ca2+ can change the sign of the synaptic strength by favoring activation of CaM kinase II to elicit a potentiation or favoring calcineurin to elicit a depression. We will examine Ca2+ -based signaling pathways from the glutamate receptors on synaptic spines to the phosphorylation of the transcription factor CREB in the nucleus with Dr. Tsien. Transgenic animals with reporter genes driven by promoters for regulatory elements for CREB and other transcription factors will be generated to examine transcription at different stimulus frequencies. Single cell PCR will be used to correlate synaptic plasticity and induciton of genes in single cells examined morphologically under the microscopy. Finally, we have developed a method termed indexing which will be optimized to a single cell level and will allow us to compare cDNA from control, LTD or LTP neurons and thereby clone novel plasticity genes.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Specialized Center (P50)
Project #
2P50MH048108-06
Application #
5214781
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
6
Fiscal Year
1996
Total Cost
Indirect Cost
Murthy, Mala; Garza, Dan; Scheller, Richard H et al. (2003) Mutations in the exocyst component Sec5 disrupt neuronal membrane traffic, but neurotransmitter release persists. Neuron 37:433-47
Gorska-Andrzejak, J; Stowers, R S; Borycz, J et al. (2003) Mitochondria are redistributed in Drosophila photoreceptors lacking milton, a kinesin-associated protein. J Comp Neurol 463:372-88
Finley, Michael F A; Scheller, Richard H; Madison, Daniel V (2003) SNAP-25 Ser187 does not mediate phorbol ester enhancement of hippocampal synaptic transmission. Neuropharmacology 45:857-62
Deisseroth, Karl; Mermelstein, Paul G; Xia, Houhui et al. (2003) Signaling from synapse to nucleus: the logic behind the mechanisms. Curr Opin Neurobiol 13:354-65
Waters, Jack; Smith, Stephen J (2002) Vesicle pool partitioning influences presynaptic diversity and weighting in rat hippocampal synapses. J Physiol 541:811-23
Horrigan, Frank T; Aldrich, Richard W (2002) Coupling between voltage sensor activation, Ca2+ binding and channel opening in large conductance (BK) potassium channels. J Gen Physiol 120:267-305
Stowers, R Steven; Megeath, Laura J; Gorska-Andrzejak, Jolanta et al. (2002) Axonal transport of mitochondria to synapses depends on milton, a novel Drosophila protein. Neuron 36:1063-77
Hopf, F Woodward; Waters, Jack; Mehta, Samar et al. (2002) Stability and plasticity of developing synapses in hippocampal neuronal cultures. J Neurosci 22:775-81
Montgomery, Johanna M; Madison, Daniel V (2002) State-dependent heterogeneity in synaptic depression between pyramidal cell pairs. Neuron 33:765-77
Finley, Michael F A; Patel, Sejal M; Madison, Daniel V et al. (2002) The core membrane fusion complex governs the probability of synaptic vesicle fusion but not transmitter release kinetics. J Neurosci 22:1266-72

Showing the most recent 10 out of 81 publications