In the mammalian olfactory system, a topographic map of receptor activation defines the quality of an olfactory sensory stimulus. Neurons expressing a given receptor, and therefore responsive to a given odorant, project with precision to two of the 1800 topographically-fixed glomeruli within the mouse olfactory bulb. Since the position of individual glomeruli are topographically defined, the bulb provides a spatial map that identifies which of the numerous receptors have been activated within the sensory epithelium. The identification of an invariant topographic map of odor quality immediately poses the interesting question as how this map is established during development and how it changes with experience. This project focuses on the role of activity-dependent plasticity in the establishment, maintenance, and refinement of a topographic map of olfactory sensory projections.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Specialized Center (P50)
Project #
5P50MH050733-09
Application #
6654625
Study Section
Special Emphasis Panel (ZMH1)
Project Start
2002-09-01
Project End
2003-08-31
Budget Start
Budget End
Support Year
9
Fiscal Year
2002
Total Cost
Indirect Cost
Name
Columbia University (N.Y.)
Department
Type
DUNS #
167204994
City
New York
State
NY
Country
United States
Zip Code
10032
Caron, Sophie J C; Ruta, Vanessa; Abbott, L F et al. (2013) Random convergence of olfactory inputs in the Drosophila mushroom body. Nature 497:113-7
Chi, Xuan; Hadjantonakis, Anna-Katerina; Wu, Zaiqi et al. (2009) A transgenic mouse that reveals cell shape and arrangement during ureteric bud branching. Genesis 47:61-6
Huang, Yan-You; Kandel, Eric R (2007) Low-frequency stimulation induces a pathway-specific late phase of LTP in the amygdala that is mediated by PKA and dependent on protein synthesis. Learn Mem 14:497-503
Huang, Yan-You; Kandel, Eric R (2007) 5-Hydroxytryptamine induces a protein kinase A/mitogen-activated protein kinase-mediated and macromolecular synthesis-dependent late phase of long-term potentiation in the amygdala. J Neurosci 27:3111-9
Yoshida, Yutaka; Han, Barbara; Mendelsohn, Monica et al. (2006) PlexinA1 signaling directs the segregation of proprioceptive sensory axons in the developing spinal cord. Neuron 52:775-88
Lu, Fang-Min; Hawkins, Robert D (2006) Presynaptic and postsynaptic Ca(2+) and CamKII contribute to long-term potentiation at synapses between individual CA3 neurons. Proc Natl Acad Sci U S A 103:4264-9
Shumyatsky, Gleb P; Malleret, Gael; Shin, Ryong-Moon et al. (2005) stathmin, a gene enriched in the amygdala, controls both learned and innate fear. Cell 123:697-709
Huang, Yan-You; Kandel, Eric R (2005) Theta frequency stimulation induces a local form of late phase LTP in the CA1 region of the hippocampus. Learn Mem 12:587-93
Wang, Hong-Gang; Lu, Fang-Min; Jin, Iksung et al. (2005) Presynaptic and postsynaptic roles of NO, cGK, and RhoA in long-lasting potentiation and aggregation of synaptic proteins. Neuron 45:389-403
Huang, Yan-You; Kandel, Eric R (2005) Theta frequency stimulation up-regulates the synaptic strength of the pathway from CA1 to subiculum region of hippocampus. Proc Natl Acad Sci U S A 102:232-7

Showing the most recent 10 out of 50 publications