. The Neuroimaging Core will continue to provide the resources for all MRI studies, and will also provide the initial neuroimaging data collected under our current Conte Center, as well as processed data from the Human Connectome Project (HCP) for comparisons. We will be using imaging sequences similar to those of the HCP in all studies, and this will include multiband acceleration for all functional imaging, as well as high-resolution T1 and T2 imaging for more precise surface reconstruction. For functional data, the Neuroimaging Core will provide both resting-state fMRI, and data from specific functional localizers that we have have established during our current Conte Center. This Core will also provide expertise on preprocessing, including implementation of latest developments in multimodal surface matching. As in our current Conte Center, we will emphasize in-depth characterization of each individual subject and plan to recruit individuals who can return for multiple visits of testing. The neuroimaging core has three specific aims: 1. To provide all MRI resources for the Projects. 2. To provide core and comparative neuroimaging data to the Projects. 3. To provide protocol and analysis solutions, informatics, and data archiving and sharing support.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Specialized Center (P50)
Project #
5P50MH094258-10
Application #
10101680
Study Section
Special Emphasis Panel (ZMH1)
Project Start
2012-07-26
Project End
2022-02-28
Budget Start
2021-03-01
Budget End
2022-02-28
Support Year
10
Fiscal Year
2021
Total Cost
Indirect Cost
Name
California Institute of Technology
Department
Type
DUNS #
009584210
City
Pasadena
State
CA
Country
United States
Zip Code
91125
Kliemann, Dorit; Adolphs, Ralph (2018) The social neuroscience of mentalizing: challenges and recommendations. Curr Opin Psychol 24:1-6
Rutishauser, Ueli; Aflalo, Tyson; Rosario, Emily R et al. (2018) Single-Neuron Representation of Memory Strength and Recognition Confidence in Left Human Posterior Parietal Cortex. Neuron 97:209-220.e3
Pauli, Wolfgang M; Nili, Amanda N; Tyszka, J Michael (2018) A high-resolution probabilistic in vivo atlas of human subcortical brain nuclei. Sci Data 5:180063
Bowren, Mark D; Croft, Katie E; Reber, Justin et al. (2018) Choosing spouses and houses: Impaired congruence between preference and choice following damage to the ventromedial prefrontal cortex. Neuropsychology 32:280-303
Lin, Chujun; Adolphs, Ralph; Alvarez, R Michael (2018) Inferring Whether Officials Are Corruptible From Looking at Their Faces. Psychol Sci 29:1807-1823
Dubois, Julien; Galdi, Paola; Han, Yanting et al. (2018) Resting-state functional brain connectivity best predicts the personality dimension of openness to experience. Personal Neurosci 1:
Adolphs, Ralph; Gläscher, Jan; Tranel, Daniel (2018) Searching for the neural causes of criminal behavior. Proc Natl Acad Sci U S A 115:451-452
Wang, Oliver; Lee, Sang Wan; O'Doherty, John et al. (2018) Model-based and model-free pain avoidance learning. Brain Neurosci Adv 2:2398212818772964
Charpentier, Caroline J; O'Doherty, John P (2018) The application of computational models to social neuroscience: promises and pitfalls. Soc Neurosci 13:637-647
Tusche, Anita; Hutcherson, Cendri A (2018) Cognitive regulation alters social and dietary choice by changing attribute representations in domain-general and domain-specific brain circuits. Elife 7:

Showing the most recent 10 out of 158 publications