This Demyelinating Diseases Center Grant proposes to accomplish a broad, indepth investigation of the causes and treatment of central and peripheral demyelinating disorders. The projects can be divided into three major categories focused on therapeutic considerations, mechanisms of demyelination and the relationship of viruses to demyelination. Many contemporary immunologic and molecular biologic techniques are employed to evaluate materials collected from carefully characterized patients, appropriate animal models or neural tissue cultures. This Center grant provides the essential research foundation for a large integrated University of Maryland program focused on the demyelinative disorders. This program, is considered by this group of investigators to be the most productive manner of solving the mysteries of these serious, chronic inflammatory diseases of the nervous system.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Specialized Center (P50)
Project #
5P50NS020022-05
Application #
3107764
Study Section
Neurological Disorders Program Project Review A Committee (NSPA)
Project Start
1983-12-01
Project End
1991-11-30
Budget Start
1987-12-01
Budget End
1988-11-30
Support Year
5
Fiscal Year
1988
Total Cost
Indirect Cost
Name
University of Maryland Baltimore
Department
Type
Schools of Medicine
DUNS #
003255213
City
Baltimore
State
MD
Country
United States
Zip Code
21201
Dashiell, S M; Rus, H; Koski, C L (2000) Terminal complement complexes concomitantly stimulate proliferation and rescue of Schwann cells from apoptosis. Glia 30:187-98
Dhib-Jalbut, S; Xia, J; Rangaviggula, H et al. (1999) Failure of measles virus to activate nuclear factor-kappa B in neuronal cells: implications on the immune response to viral infections in the central nervous system. J Immunol 162:4024-9
Dashiell, S M; Koski, C L (1999) Sublytic terminal complement complexes decrease P0 Gene expression in Schwann cells. J Neurochem 73:2321-30
Cheng, G; Nazar, A S; Shin, H S et al. (1998) IP-10 gene transcription by virus in astrocytes requires cooperation of ISRE with adjacent kappaB site but not IRF-1 or viral transcription. J Interferon Cytokine Res 18:987-97
Jiang, H; Williams, G J; Dhib-Jalbut, S (1997) The effect of interferon beta-1b on cytokine-induced adhesion molecule expression. Neurochem Int 30:449-53
Dashiell, S M; Vanguri, P; Koski, C L (1997) Dibutyryl cyclic AMP and inflammatory cytokines mediate C3 expression in Schwann cells. Glia 20:308-21
Klyushnenkova, E N; Vanguri, P (1997) Ia expression and antigen presentation by glia: strain and cell type-specific differences among rat astrocytes and microglia. J Neuroimmunol 79:190-201
Vanguri, P; Cho, S Y; Chi, C M (1996) Role of muIP-10 in interferon-gamma induction of Ia in rat astrocytes. Mol Immunol 33:1079-87
Wojcik, W J; Swoveland, P; Zhang, X et al. (1996) Chronic intrathecal infusion of phosphorothioate or phosphodiester antisense oligonucleotides against cytokine responsive gene-2/IP-10 in experimental allergic encephalomyelitis of lewis rat. J Pharmacol Exp Ther 278:404-10
Dhib-Jalbut, S; Gogate, N; Jiang, H et al. (1996) Human microglia activate lymphoproliferative responses to recall viral antigens. J Neuroimmunol 65:67-73

Showing the most recent 10 out of 21 publications