The core will provide standardized surgical procedures, behavioral, histological and neurochemical analysis to all projects. Specifically, the core will provide rats with 6-hydroxydopamine-induced lesions of the nigrostriatal pathway, with continuous L-DOPA delivery by osmotic minipumps, with implanted GABA-producing cells and with implanted deep brain stimulators of the subthalamic nucleus, and their respective controls. The core will provide behavioral analysis to assess motor behavior in untreated and treated rats with nigrostriatal lesions and their controls. The core will provide histological analysis of lesions, cannula and electrode placement, transplant location and size, and of morphological integrity of the subthalamic nucleus. The core will provide neurochemical analysis of dopamine depletion. In addition, the core will collect and perform neuropathological examinations of post-mortem human brains of patients with Parkinson's disease and controls. This tissue will be used in project 1 and will be made available to other investigators outside the Center.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Specialized Center (P50)
Project #
1P50NS038367-01A1
Application #
6254694
Study Section
Special Emphasis Panel (ZNS1-SRB-K (01))
Project Start
1999-09-30
Project End
2004-07-31
Budget Start
Budget End
Support Year
1
Fiscal Year
1999
Total Cost
Indirect Cost
Name
University of California Los Angeles
Department
Type
DUNS #
119132785
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Kusters, Cynthia D J; Paul, Kimberly C; Guella, Ilaria et al. (2018) Dopamine receptors and BDNF-haplotypes predict dyskinesia in Parkinson's disease. Parkinsonism Relat Disord 47:39-44
Chen, Honglei; Ritz, Beate (2018) The Search for Environmental Causes of Parkinson's Disease: Moving Forward. J Parkinsons Dis 8:S9-S17
Richter, Franziska; Subramaniam, Sudhakar R; Magen, Iddo et al. (2017) A Molecular Tweezer Ameliorates Motor Deficits in Mice Overexpressing ?-Synuclein. Neurotherapeutics 14:1107-1119
Mata, Ignacio F; Johnson, Catherine O; Leverenz, James B et al. (2017) Large-scale exploratory genetic analysis of cognitive impairment in Parkinson's disease. Neurobiol Aging 56:211.e1-211.e7
Paul, Kimberly C; Sinsheimer, Janet S; Cockburn, Myles et al. (2017) Organophosphate pesticides and PON1 L55M in Parkinson's disease progression. Environ Int 107:75-81
Mata, Ignacio F; Leverenz, James B; Weintraub, Daniel et al. (2016) GBA Variants are associated with a distinct pattern of cognitive deficits in Parkinson's disease. Mov Disord 31:95-102
Paul, Kimberly C; Rausch, Rebecca; Creek, Michelle M et al. (2016) APOE, MAPT, and COMT and Parkinson's Disease Susceptibility and Cognitive Symptom Progression. J Parkinsons Dis 6:349-59
Paul, Kimberly C; Sinsheimer, Janet S; Rhodes, Shannon L et al. (2016) Organophosphate Pesticide Exposures, Nitric Oxide Synthase Gene Variants, and Gene-Pesticide Interactions in a Case-Control Study of Parkinson's Disease, California (USA). Environ Health Perspect 124:570-7
Kannarkat, G T; Cook, D A; Lee, J-K et al. (2015) Common Genetic Variant Association with Altered HLA Expression, Synergy with Pyrethroid Exposure, and Risk for Parkinson's Disease: An Observational and Case-Control Study. NPJ Parkinsons Dis 1:
Lee, P C; Bordelon, Y; Bronstein, J et al. (2015) Head injury, ?-synuclein genetic variability and Parkinson's disease. Eur J Neurol 22:874-8

Showing the most recent 10 out of 115 publications