The Neuropathology Core (Core C) has a central role in the Parkinson's Disease Research Center, it interacts closely with the Clinical Core and support the activities of all four projects. The goals of Core C are: 1) to arranges/conduct autopsies, establish diagnoses and delineate clinical pathological correlations in PD patients and age-matched controls evaluated in the Clinical Core and Project 1; 2) to provide well- characterized autopsy brain tissues for studies in projects 1-4; 3) to facilitate the pathological assessment of animal (mice) models relevant to PD and to perform and assist in quantitative morphological analyses of human and mice brains using state-of-the-art unbiased stereological approaches (Projects 1-4); and 4) to train physician/scientists in issues relevant to the neuropathology of PD and age-associated neurodegenerative disorders. The staff of Core C has experience with the pathological diagnoses, morphological studies, and quantitative morphometry of neurodegenerative disorders and has been responsible for many years for similar core functions in the JHMI Alzheimer's Disease Research Center. To accomplish its goals, Core C staffs and maintains the Brain Resource Center (BRC), a histology and immunocytochemistry (ICC) laboratory, and a quantitative morphometry and stereology facility. The BRC serves as a repository of fixed and frozen brain tissues prepared for research including bases of PD and controls. Through its many functions and facilities, Core C acts to support and coordinate the evaluation of clinical and experimental material, thereby contributing to key diagnostic and research activities of the PD Center.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Specialized Center (P50)
Project #
1P50NS038377-01
Application #
6112677
Study Section
Project Start
1998-09-30
Project End
1999-08-31
Budget Start
1997-10-01
Budget End
1998-09-30
Support Year
1
Fiscal Year
1998
Total Cost
Indirect Cost
Name
Johns Hopkins University
Department
Type
DUNS #
045911138
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Kam, Tae-In; Mao, Xiaobo; Park, Hyejin et al. (2018) Poly(ADP-ribose) drives pathologic ?-synuclein neurodegeneration in Parkinson's disease. Science 362:
Sathe, Gajanan; Na, Chan Hyun; Renuse, Santosh et al. (2018) Phosphotyrosine profiling of human cerebrospinal fluid. Clin Proteomics 15:29
Guerreiro, Rita; Ross, Owen A; Kun-Rodrigues, Celia et al. (2018) Investigating the genetic architecture of dementia with Lewy bodies: a two-stage genome-wide association study. Lancet Neurol 17:64-74
Hinkle, Jared T; Perepezko, Kate; Bakker, Catherine C et al. (2018) Domain-specific cognitive impairment in non-demented Parkinson's disease psychosis. Int J Geriatr Psychiatry 33:e131-e139
Hinkle, Jared T; Perepezko, Kate; Mills, Kelly A et al. (2018) Dopamine transporter availability reflects gastrointestinal dysautonomia in early Parkinson disease. Parkinsonism Relat Disord 55:8-14
Kim, Donghoon; Hwang, Heehong; Choi, Seulah et al. (2018) D409H GBA1 mutation accelerates the progression of pathology in A53T ?-synuclein transgenic mouse model. Acta Neuropathol Commun 6:32
Kim, Sangjune; Yun, Seung Pil; Lee, Saebom et al. (2018) GBA1 deficiency negatively affects physiological ?-synuclein tetramers and related multimers. Proc Natl Acad Sci U S A 115:798-803
Kim, Donghoon; Yoo, Je Min; Hwang, Heehong et al. (2018) Graphene quantum dots prevent ?-synucleinopathy in Parkinson's disease. Nat Nanotechnol :
Hinkle, Jared T; Perepezko, Kate; Mari, Zoltan et al. (2018) Perceived Treatment Status of Fluctuations in Parkinson Disease Impacts Suicidality. Am J Geriatr Psychiatry 26:700-710
Kaji, Seiji; Maki, Takakuni; Kinoshita, Hisanori et al. (2018) Pathological Endogenous ?-Synuclein Accumulation in Oligodendrocyte Precursor Cells Potentially Induces Inclusions in Multiple System Atrophy. Stem Cell Reports 10:356-365

Showing the most recent 10 out of 250 publications