Mutations in the parkin gene are the main genetic cause of autosomal recessive Parkinson's disease (PD) and mutations in parkin also play a major role in familial PD. Preliminary studies indicate a potential pivotal role for parkin in the ubiquitin proteasomal pathway (UPP) by functioning as an ubiquitin E3 ligase. Most disease causing mutations of parkin are thought to be loss of function mutations that ultimately lead to the absence of ubiquitination and the subsequent failure of UPP-mediated degradation of parkin substrates. Thus, the abnormal accumulation of parkin substrates is thought to play a role in the demise of substantia nigra dopaminergic neurons in patients with parkin mutations. A number of putative parkin substrates have been identified, but their importance in the pathogenesis of PD due to parkin mutations is not known. We propose to characterize parkin knockout mice to formally test the hypothesis that the absence of parkin function is the cause of PD due to parkin mutations. Furthermore, biochemical and proteomic characterization of the parkin knockout mice may shed light on the substrates that are important in the pathogenesis of PD due to parkin mutations. Accordingly experiments are proposed to further characterize the role of parldn and it's substrates in the pathogenesis of PD.
In Specific Aim #1 we will characterize parkin knockout mice.
In Specific Aim #2 we will evaluate the sensitivity of parkin knockouts to environmental toxins.
In Specific Aim #3 we will evaluate the interaction of parkin with the alpha-synuclein interacting protein, synphilin-1 and determine whether parkin mediates K48 or K63 ubiquitin linkages.
In Specific Aim #4 we will determine whether parkin interacts with alpha-synuclein by evaluating of the effect of crossing parkin knockout mice with A53T mutant alpha-synuclein transgenic mice and further evaluate the interaction of parkin with the alpha-synuclein interacting protein, synphilin-1.
In Specific Aim #5 we will identify and characterize parkin interacting proteins and identify compensatory changes in parkin knockout mice. Development and characterization of parkin knockout, understanding the relationship of parkin, alpha-synuclein and synphilin- 1 in the pathogenesis of PD may provide insight into the molecular mechanisms by which these gene products induce neuronal damage and may provide novel therapeutics and targets to prevent the toxic effects of these familial associated genes in the degenerative process of PD.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Specialized Center (P50)
Project #
5P50NS038377-08
Application #
7280759
Study Section
Special Emphasis Panel (ZNS1)
Project Start
Project End
Budget Start
2006-09-01
Budget End
2007-08-31
Support Year
8
Fiscal Year
2006
Total Cost
$341,494
Indirect Cost
Name
Johns Hopkins University
Department
Type
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Kim, Sangjune; Yun, Seung Pil; Lee, Saebom et al. (2018) GBA1 deficiency negatively affects physiological ?-synuclein tetramers and related multimers. Proc Natl Acad Sci U S A 115:798-803
Kim, Donghoon; Yoo, Je Min; Hwang, Heehong et al. (2018) Graphene quantum dots prevent ?-synucleinopathy in Parkinson's disease. Nat Nanotechnol :
Hinkle, Jared T; Perepezko, Kate; Mari, Zoltan et al. (2018) Perceived Treatment Status of Fluctuations in Parkinson Disease Impacts Suicidality. Am J Geriatr Psychiatry 26:700-710
Kaji, Seiji; Maki, Takakuni; Kinoshita, Hisanori et al. (2018) Pathological Endogenous ?-Synuclein Accumulation in Oligodendrocyte Precursor Cells Potentially Induces Inclusions in Multiple System Atrophy. Stem Cell Reports 10:356-365
Yun, Seung Pil; Kim, Donghoon; Kim, Sangjune et al. (2018) ?-Synuclein accumulation and GBA deficiency due to L444P GBA mutation contributes to MPTP-induced parkinsonism. Mol Neurodegener 13:1
Hinkle, Jared T; Perepezko, Kate; Rosenthal, Liana S et al. (2018) Markers of impaired motor and cognitive volition in Parkinson's disease: Correlates of dopamine dysregulation syndrome, impulse control disorder, and dyskinesias. Parkinsonism Relat Disord 47:50-56
Berger, Nathan A; Besson, Valerie C; Boulares, A Hamid et al. (2018) Opportunities for the repurposing of PARP inhibitors for the therapy of non-oncological diseases. Br J Pharmacol 175:192-222
Wu, Xinyan; Zahari, Muhammad Saddiq; Renuse, Santosh et al. (2018) Quantitative phosphoproteomic analysis reveals reciprocal activation of receptor tyrosine kinases between cancer epithelial cells and stromal fibroblasts. Clin Proteomics 15:21
Blauwendraat, Cornelis; Pletnikova, Olga; Geiger, Joshua T et al. (2018) Genetic analysis of neurodegenerative diseases in a pathology cohort. Neurobiol Aging :
Heo, Seok; Diering, Graham H; Na, Chan Hyun et al. (2018) Identification of long-lived synaptic proteins by proteomic analysis of synaptosome protein turnover. Proc Natl Acad Sci U S A 115:E3827-E3836

Showing the most recent 10 out of 250 publications