The overall goals of this proposal are to understand the role of a-synuclein, parkin, LRRK2 and the relationship with oxidative stress in the pathogenesis and pathology of Parkinson's disease (PD) and to define the molecular mechanisms of neuronal injury in animal models of PD. The program represents a multi-disciplinary, mechanistic approach involving interactive, productive investigators with complementary areas of expertise who have long been committed to the studies of neurodegenerative diseases.
Our aim will be to integrate the activities of various disciplines such that the interrelationships will result in greater scientific contributions and achievements if each project were pursued individually. The program has one major theme: To understand the role of familial associated genes a-synuclein, parkin and LRRK2 in the pathogenesis of Parkinson's disease and related disorders. The role of a-synuclein, parkin, LRRK2 and oxidative stress in PD pathogenesis will be investigated using molecular, transgenic, neuropathologic, cell biologic, and neurobehavioral approaches to examine the mechanism of neuronal dysfunction and injury due to alterations in these gene products. We believe that our multi-disciplinary approach has the capacity to produce unique information concerning the mechanisms of neurodegeneration in genetic animal models of Parkinson's disease and the related synucleinopathies and lead to better understanding of the function and the role of a-synuclein, parkin and LRRK2 in normal and pathophysiologic processes related to PD. The program consists of three projects: 1) Biology of Parkin and its Role in Parkinson's Disease;2) Mechanisms of Neurodegeneration in Human alpha-Synuclein Transgenic Mice;3) LRRK2 Biology in Parkinson's disease and four cores A) Administration and training, B) Bioenergetics, C) Transgenic and Neurobehavior and D) Clinical.

Public Health Relevance

Parkinson's Disease (PD) is a common progressive neurodegenerative disorder with no neuroprotective or neurorestorative therapy. Understanding the molecular mechanisms by which a-synuclein, parkin, LRRK2 and oxidative stress contribute to the degeneration of neurons in PD could lead to innovative therapies to slow or halt the progression of PD.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Specialized Center (P50)
Project #
5P50NS038377-12
Application #
7941852
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Program Officer
Sieber, Beth-Anne
Project Start
1998-09-30
Project End
2014-07-31
Budget Start
2010-08-01
Budget End
2011-07-31
Support Year
12
Fiscal Year
2010
Total Cost
$2,029,946
Indirect Cost
Name
Johns Hopkins University
Department
Neurology
Type
Schools of Medicine
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Berger, Nathan A; Besson, Valerie C; Boulares, A Hamid et al. (2018) Opportunities for the repurposing of PARP inhibitors for the therapy of non-oncological diseases. Br J Pharmacol 175:192-222
Wu, Xinyan; Zahari, Muhammad Saddiq; Renuse, Santosh et al. (2018) Quantitative phosphoproteomic analysis reveals reciprocal activation of receptor tyrosine kinases between cancer epithelial cells and stromal fibroblasts. Clin Proteomics 15:21
Blauwendraat, Cornelis; Pletnikova, Olga; Geiger, Joshua T et al. (2018) Genetic analysis of neurodegenerative diseases in a pathology cohort. Neurobiol Aging :
Heo, Seok; Diering, Graham H; Na, Chan Hyun et al. (2018) Identification of long-lived synaptic proteins by proteomic analysis of synaptosome protein turnover. Proc Natl Acad Sci U S A 115:E3827-E3836
Dawson, Ted M; Golde, Todd E; Lagier-Tourenne, Clotilde (2018) Animal models of neurodegenerative diseases. Nat Neurosci 21:1370-1379
Lee, Saebom; Kim, Sangjune; Park, Yong Joo et al. (2018) The c-Abl inhibitor, Radotinib HCl, is neuroprotective in a preclinical Parkinson's disease mouse model. Hum Mol Genet 27:2344-2356
Xiong, Yulan; Neifert, Stewart; Karuppagounder, Senthilkumar S et al. (2018) Robust kinase- and age-dependent dopaminergic and norepinephrine neurodegeneration in LRRK2 G2019S transgenic mice. Proc Natl Acad Sci U S A 115:1635-1640
Yun, Seung Pil; Kam, Tae-In; Panicker, Nikhil et al. (2018) Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson's disease. Nat Med 24:931-938
Hinkle, Jared Thomas; Perepezko, Kate; Bakker, Catherine C et al. (2018) Onset and Remission of Psychosis in Parkinson's Disease: Pharmacologic and Motoric Markers. Mov Disord Clin Pract 5:31-38
Kam, Tae-In; Mao, Xiaobo; Park, Hyejin et al. (2018) Poly(ADP-ribose) drives pathologic ?-synuclein neurodegeneration in Parkinson's disease. Science 362:

Showing the most recent 10 out of 250 publications