Project 1: Biology of Parkin and Its Role in Parkinson's Disease Mutations in the parkin gene play a prominent role in Parkinson's disease (PD) as mutations in parkin are the main genetic cause of autosomal recessive PD and mutations in parkin also appear to play a role in familial PD. Parkin plays a pivotal role in the ubiquitin proteasomal pathway (UPP) by functioning as an ubiquitin E3 ligase. Most disease causing mutations of parkin are thought to be loss of function mutations that ultimately lead to the absence of ubiquitination and the subsequent failure of UPP-mediated degradation of parkin substrates. Thus, the abnormal accumulation of parkin substrates could play a role in the demise of substantia nigra dopaminergic neurons in patients with parkin mutations. Moreover, inactivation of parkin through dopaminergic and oxidative and nitrosative stress may play a role in sporadic PD. The stress activated non-receptor tyrosine kinase c-Abl phosphorylates and inactivates parkin and may play a critical role in sporadic PD by inactivating parkin. We propose to characterize the role of c-Abl mediated inactivation of parkin and its relationship to oxidative and nitrosative stress in sporadic PD as well as the role of parkin substrates in the pathogenesis of PD. Understanding the function and role of c-Abl and oxidative/nitrosative stress mediated inactivation of parkin may provide novel therapeutics targets to prevent the toxic effects of parkin deficiency in the degenerative process of PD.

Public Health Relevance

Parkinson Disease (PD) is common neurodegenerative disease with no proven neuroprotective or neurorestorative therapy. Understanding the molecular mechanisms by which parkin inactivation leads to PD may provide novel therapeutic opportunities to maintain parkin in a catalytically active neuroprotective state.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Specialized Center (P50)
Project #
5P50NS038377-14
Application #
8380722
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
Project End
Budget Start
2012-08-01
Budget End
2013-07-31
Support Year
14
Fiscal Year
2012
Total Cost
$358,348
Indirect Cost
$139,843
Name
Johns Hopkins University
Department
Type
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Yun, Seung Pil; Kim, Donghoon; Kim, Sangjune et al. (2018) ?-Synuclein accumulation and GBA deficiency due to L444P GBA mutation contributes to MPTP-induced parkinsonism. Mol Neurodegener 13:1
Hinkle, Jared T; Perepezko, Kate; Rosenthal, Liana S et al. (2018) Markers of impaired motor and cognitive volition in Parkinson's disease: Correlates of dopamine dysregulation syndrome, impulse control disorder, and dyskinesias. Parkinsonism Relat Disord 47:50-56
Berger, Nathan A; Besson, Valerie C; Boulares, A Hamid et al. (2018) Opportunities for the repurposing of PARP inhibitors for the therapy of non-oncological diseases. Br J Pharmacol 175:192-222
Wu, Xinyan; Zahari, Muhammad Saddiq; Renuse, Santosh et al. (2018) Quantitative phosphoproteomic analysis reveals reciprocal activation of receptor tyrosine kinases between cancer epithelial cells and stromal fibroblasts. Clin Proteomics 15:21
Blauwendraat, Cornelis; Pletnikova, Olga; Geiger, Joshua T et al. (2018) Genetic analysis of neurodegenerative diseases in a pathology cohort. Neurobiol Aging :
Heo, Seok; Diering, Graham H; Na, Chan Hyun et al. (2018) Identification of long-lived synaptic proteins by proteomic analysis of synaptosome protein turnover. Proc Natl Acad Sci U S A 115:E3827-E3836
Dawson, Ted M; Golde, Todd E; Lagier-Tourenne, Clotilde (2018) Animal models of neurodegenerative diseases. Nat Neurosci 21:1370-1379
Lee, Saebom; Kim, Sangjune; Park, Yong Joo et al. (2018) The c-Abl inhibitor, Radotinib HCl, is neuroprotective in a preclinical Parkinson's disease mouse model. Hum Mol Genet 27:2344-2356
Xiong, Yulan; Neifert, Stewart; Karuppagounder, Senthilkumar S et al. (2018) Robust kinase- and age-dependent dopaminergic and norepinephrine neurodegeneration in LRRK2 G2019S transgenic mice. Proc Natl Acad Sci U S A 115:1635-1640
Yun, Seung Pil; Kam, Tae-In; Panicker, Nikhil et al. (2018) Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson's disease. Nat Med 24:931-938

Showing the most recent 10 out of 250 publications